Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October 2014 Volume 34 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October 2014 Volume 34 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review)

  • Authors:
    • Xin Yu
    • Zheng Li
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, P.R. China
  • Pages: 923-933
    |
    Published online on: July 15, 2014
       https://doi.org/10.3892/ijmm.2014.1853
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Vascular smooth muscle cells (VSMCs) are involved in all stages of the progression of human atherosclerosis (AS). MicroRNAs (miRNAs or miRs) are non‑coding, small RNAs that regulate gene expression at the post‑transcriptional level through translational repression or messenger RNA (mRNA) decay. Recently, a variety of functions of VSMCs that are involved in AS, including differentiation, migration, proliferation, extracellular matrix (ECM) synthesis and apoptosis, have been found to be regulated by miRNAs. This review provides an overview of the role of miRNAs in the regulation of the functions of VSMCs, as well as their targets and potential implications in AS. The data presented herein suggest that the specific modulation of miRNAs may present an attractive approach for the diagnosis and treatment of AS.
View Figures

Figure 1

Figure 2

View References

1 

Lusis AJ: Atherosclerosis. Nature. 407:233–241. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M and Poelmann RE: Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol. 19:1589–1594. 1999.PubMed/NCBI

3 

Frid MG, Dempsey EC, Durmowicz AG and Stenmark KR: Smooth muscle cell heterogeneity in pulmonary and systemic vessels. Importance in vascular disease. Arterioscler Thromb Vasc Biol. 17:1203–1209. 1997. View Article : Google Scholar : PubMed/NCBI

4 

Schachter M: Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers. Int J Cardiol. 62(Suppl 2): S85–S90. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Libby P, Sukhova G, Lee RT and Liao JK: Molecular biology of atherosclerosis. Int J Cardiol. 62(Suppl 2): S23–S29. 1997. View Article : Google Scholar

6 

Schwartz SM: Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest. 100(Suppl): S87–S89. 1997.PubMed/NCBI

7 

Doran AC, Meller N and McNamara CA: Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 28:812–819. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Huntzinger E and Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 12:99–110. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Cho WC: OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 6:602007. View Article : Google Scholar : PubMed/NCBI

10 

Small EM and Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature. 469:336–342. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Song Z and Li G: Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury. J Cardiovasc Transl Res. 3:246–250. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Zernecke A: MicroRNAs in the regulation of immune cell functions-implications for atherosclerotic vascular disease. Thromb Haemost. 107:626–633. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Aghabozorg Afjeh SS and Ghaderian SM: The role of microRNAs in cardiovascular disease. Int J Mol Cell Med. 2:50–57. 2013.PubMed/NCBI

14 

Robinson HC and Baker AH: How do microRNAs affect vascular smooth muscle cell biology? Curr Opin Lipidol. 23:405–411. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Owens GK, Kumar MS and Wamhoff BR: Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 84:767–801. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Stegemann JP, Hong H and Nerem RM: Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol (1985). 98:2321–2327. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Tang Y, Yang X, Friesel RE, Vary CP and Liaw L: Mechanisms of TGF-β-induced differentiation in human vascular smooth muscle cells. J Vasc Res. 48:485–494. 2011.

18 

Millette E, Rauch BH, Kenagy RD, Daum G and Clowes AW: Platelet-derived growth factor-BB transactivates the fibroblast growth factor receptor to induce proliferation in human smooth muscle cells. Trends Cardiovasc Med. 16:25–28. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Raines EW: PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 15:237–254. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362:801–809. 1993. View Article : Google Scholar : PubMed/NCBI

21 

Chen J, Yin H, Jiang Y, et al: Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol. 31:368–375. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Xie C, Huang H, Sun X, et al: MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 20:205–210. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Jiang Y, Yin H and Zheng XL: MicroRNA-1 inhibits myocardin-induced contractility of human vascular smooth muscle cells. J Cell Physiol. 225:506–511. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Suzuki T, Aizawa K, Matsumura T and Nagai R: Vascular implications of the Kruppel-like family of transcription factors. Arterioscler Thromb Vasc Biol. 25:1135–1141. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH and Owens GK: Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem. 280:9719–9727. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Yoshida T, Kaestner KH and Owens GK: Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res. 102:1548–1557. 2008. View Article : Google Scholar

27 

King KE, Iyemere VP, Weissberg PL and Shanahan CM: Kruppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem. 278:11661–11669. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Wang C, Han M, Zhao XM and Wen JK: Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem. 144:313–321. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Katakami N, Kaneto H, Hao H, et al: Role of pim-1 in smooth muscle cell proliferation. J Biol Chem. 279:54742–54749. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Wang J, Yan CH, Li Y, et al: MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes. Exp Cell Res. 319:1165–1175. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Han Y, Deng J, Guo L, et al: CREG promotes a mature smooth muscle cell phenotype and reduces neointimal formation in balloon-injured rat carotid artery. Cardiovasc Res. 78:597–604. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Torella D, Iaconetti C, Catalucci D, et al: MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 109:880–893. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Fichtlscherer S, De Rosa S, Fox H, et al: Circulating microRNAs in patients with coronary artery disease. Circ Res. 107:677–684. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Miano JM: Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol. 35:577–593. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Madsen CS, Hershey JC, Hautmann MB, White SL and Owens GK: Expression of the smooth muscle myosin heavy chain gene is regulated by a negative-acting GC-rich element located between two positive-acting serum response factor-binding elements. J Biol Chem. 272:6332–6340. 1997. View Article : Google Scholar

36 

Deaton RA, Gan Q and Owens GK: Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. Am J Physiol Heart Circ Physiol. 296:H1027–H1037. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Cordes KR, Sheehy NT, White MP, et al: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 460:705–710. 2009.PubMed/NCBI

38 

Raitoharju E, Lyytikäinen LP, Levula M, et al: miR-21, miR-210, miR-34a, and miR-146a/b are upregulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 219:211–217. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Hergenreider E, Heydt S, Tréguer K, et al: Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 14:249–256. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Lovren F, Pan Y, Quan A, et al: MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 126(Suppl 1): S81–S90. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Boettger T, Beetz N, Kostin S, et al: Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 119:2634–2647. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Rangrez AY, Massy ZA, Metzinger-Le Meuth V and Metzinger L: miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. Circ Cardiovasc Genet. 4:197–205. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Chan MC, Hilyard AC, Wu C, et al: Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 29:559–573. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Chan MC, Nguyen PH, Davis BN, et al: A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol. 27:5776–5789. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Leeper NJ, Raiesdana A, Kojima Y, et al: MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 226:1035–1043. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Liu X, Cheng Y, Zhang S, Lin Y, Yang J and Zhang C: A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 104:476–487. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Davis BN, Hilyard AC, Nguyen PH, Lagna G and Hata A: Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 284:3728–3738. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Liu X, Cheng Y, Yang J, Xu L and Zhang C: Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol. 52:245–255. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Tanner FC, Yang ZY, Duckers E, Gordon D, Nabel GJ and Nabel EG: Expression of cyclin-dependent kinase inhibitors in vascular disease. Circ Res. 82:396–403. 1998. View Article : Google Scholar : PubMed/NCBI

50 

Stewart MC, Kadlcek RM, Robbins PD, MacLeod JN and Ballock RT: Expression and activity of the CDK inhibitor p57Kip2 in chondrocytes undergoing hypertrophic differentiation. J Bone Miner Res. 19:123–132. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Ashman LK: The biology of stem cell factor and its receptor c-kit. Int J Biochem Cell Biol. 31:1037–1051. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Yang G, Pei Y, Cao Q and Wang R: MicroRNA-21 represses human cystathionine gamma-lyase expression by targeting at specificity protein-1 in smooth muscle cells. J Cell Physiol. 227:3192–3200. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Ji R, Cheng Y, Yue J, et al: MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 100:1579–1588. 2007. View Article : Google Scholar

54 

Davis BN, Hilyard AC, Lagna G and Hata A: SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 454:56–61. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Ozpolat B, Akar U, Steiner M, et al: Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells. Mol Cancer Res. 5:95–108. 2007. View Article : Google Scholar

56 

Cash AC and Andrews J: Fine scale analysis of gene expression in Drosophila melanogaster gonads reveals programmed cell death 4 promotes the differentiation of female germline stem cells. BMC Dev Biol. 12:42012.

57 

Curcio A, Torella D and Indolfi C: Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J. 75:1287–1296. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Liu X, Cheng Y, Chen X, Yang J, Xu L and Zhang C: MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2. J Biol Chem. 286:42371–42380. 2011. View Article : Google Scholar : PubMed/NCBI

59 

An Y, Kang Q, Zhao Y, Hu X and Li N: Lats2 modulates adipocyte proliferation and differentiation via hippo signaling. PloS One. 8:e720422013. View Article : Google Scholar : PubMed/NCBI

60 

Wu WH, Hu CP, Chen XP, et al: MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension. Am J Hypertens. 24:1087–1093. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Weir L, Chen D, Pastore C, Isner JM and Walsh K: Expression of gax, a growth arrest homeobox gene, is rapidly downregulated in the rat carotid artery during the proliferative response to balloon injury. J Biol Chem. 270:5457–5461. 1995. View Article : Google Scholar : PubMed/NCBI

62 

Xia S, Tai X, Wang Y, et al: Involvement of Gax gene in hypoxia-induced pulmonary hypertension, proliferation, and apoptosis of arterial smooth muscle cells. Am J Respir Cell Mol Biol. 44:66–73. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Saito T, Itoh H, Yamashita J, et al: Angiotensin II suppresses growth arrest specific homeobox (Gax) expression via redox-sensitive mitogen-activated protein kinase (MAPK). Regul Pept. 127:159–167. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Gorski DH, LePage DF, Patel CV, Copeland NG, Jenkins NA and Walsh K: Molecular cloning of a diverged homeobox gene that is rapidly downregulated during the G0/G1 transition in vascular smooth muscle cells. Mol Cell Biol. 13:3722–3733. 1993.PubMed/NCBI

65 

Yamashita J, Itoh H, Ogawa Y, et al: Opposite regulation of Gax homeobox expression by angiotensin II and C-type natriuretic peptide. Hypertension. 29:381–387. 1997. View Article : Google Scholar : PubMed/NCBI

66 

Witzenbichler B, Kureishi Y, Luo Z, Le Roux A, Branellec D and Walsh K: Regulation of smooth muscle cell migration and integrin expression by the Gax transcription factor. J Clin Invest. 104:1469–1480. 1999. View Article : Google Scholar : PubMed/NCBI

67 

Wassmann S, Wassmann K, Jung A, et al: Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. J Mol Cell Cardiol. 43:301–307. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Sun SG, Zheng B, Han M, et al: miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep. 12:56–62. 2011.

69 

Zhang Y, Wang Y, Wang X, et al: Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J Hypertens. 29:1560–1568. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Zheng X, Li A, Zhao L, et al: Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochem Biophys Res Commun. 437:625–631. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Cheng Y, Liu X, Yang J, et al: MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 105:158–166. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Quintavalle M, Elia L, Condorelli G and Courtneidge SA: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 189:13–22. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Wang YS, Chou WW, Chen KC, Cheng HY, Lin RT and Juo SH: MicroRNA-152 mediates DNMT1-regulated DNA methylation in the estrogen receptor α gene. PloS One. 7:e306352012.PubMed/NCBI

74 

Li E, Bestor TH and Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69:915–926. 1992. View Article : Google Scholar : PubMed/NCBI

75 

Huang RS, Hu GQ, Lin B, Lin ZY and Sun CC: MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med. 58:961–967. 2010.PubMed/NCBI

76 

Ma X, Ma C and Zheng X: MicroRNA-155 in the pathogenesis of atherosclerosis: a conflicting role? Heart Lung Circ. 22:811–818. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Remus EW, Lyle AN, Weiss D, et al: miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells. Atherosclerosis. 228:168–174. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Wang YS, Wang HY, Liao YC, et al: MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation. Cardiovasc Res. 95:517–526. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Ammit AJ and Panettieri RA Jr: Invited review: the circle of life: cell cycle regulation in airway smooth muscle. J Appl Physiol (1985). 91:1431–1437. 2001.PubMed/NCBI

80 

Chotani MA, Touhalisky K and Chiu IM: The small GTPases Ras, Rac, and Cdc42 transcriptionally regulate expression of human fibroblast growth factor 1. J Biol Chem. 275:30432–30438. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Lindner V and Reidy MA: Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci USA. 88:3739–3743. 1991. View Article : Google Scholar : PubMed/NCBI

82 

Hanna AK, Fox JC, Neschis DG, Safford SD, Swain JL and Golden MA: Antisense basic fibroblast growth factor gene transfer reduces neointimal thickening after arterial injury. J Vasc Surg. 25:320–325. 1997. View Article : Google Scholar : PubMed/NCBI

83 

Merlet E, Atassi F, Motiani RK, et al: miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc Res. 98:458–468. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Liu Q, Fu H, Sun F, et al: miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic acids Res. 36:5391–5404. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Sahoo SK, Kim T, Kang GB, Lee JG, Eom SH and Kim do H: Characterization of calumenin-SERCA2 interaction in mouse cardiac sarcoplasmic reticulum. J Biol Chem. 284:31109–31121. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Sun Y, Chen D, Cao L, et al: miR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc Res. 100:272–279. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Li P, Liu Y, Yi B, et al: MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc Res. 99:185–193. 2013. View Article : Google Scholar

88 

Bonta PI, Pols TW and de Vries CJ: NR4A nuclear receptors in atherosclerosis and vein-graft disease. Trends Cardiovasc Med. 17:105–111. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Yu ML, Wang JF, Wang GK, et al: Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J. 75:703–709. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Doe Z, Fukumoto Y, Takaki A, et al: Evidence for Rho-kinase activation in patients with pulmonary arterial hypertension. Circ J. 73:1731–1739. 2009. View Article : Google Scholar : PubMed/NCBI

91 

Zhou YC and Waxman DJ: Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem. 274:2672–2681. 1999.

92 

Chen KC, Hsieh IC, Hsi E, et al: Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J Cell Sci. 124:4115–4124. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Mehta JL, Chen J, Hermonat PL, Romeo F and Novelli G: Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res. 69:36–45. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Mehta JL and Li DY: Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells. Biochem Biophys Res Commun. 248:511–514. 1998. View Article : Google Scholar : PubMed/NCBI

95 

Tan KS, Armugam A, Sepramaniam S, et al: Expression profile of MicroRNAs in young stroke patients. PloS One. 4:e76892009. View Article : Google Scholar : PubMed/NCBI

96 

Urbich C, Kuehbacher A and Dimmeler S: Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 79:581–588. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Chen KC, Wang YS, Hu CY, et al: OxLDL upregulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J. 25:1718–1728. 2011. View Article : Google Scholar

98 

Aoyagi M, Yamamoto M, Azuma H, et al: Immunolocalization of matrix metalloproteinases in rabbit carotid arteries after balloon denudation. Histochem Cell Biol. 109:97–102. 1998. View Article : Google Scholar : PubMed/NCBI

99 

Gimona M, Kaverina I, Resch GP, Vignal E and Burgstaller G: Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell. 14:2482–2491. 2003. View Article : Google Scholar : PubMed/NCBI

100 

Linder S and Aepfelbacher M: Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol. 13:376–385. 2003. View Article : Google Scholar : PubMed/NCBI

101 

Kunugi S, Iwabuchi S, Matsuyama D, Okajima T and Kawahara K: Negative-feedback regulation of ATP release: ATP release from cardiomyocytes is strictly regulated during ischemia. Biochem Biophys Res Commun. 416:409–415. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Bennett MR: Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res. 41:361–368. 1999. View Article : Google Scholar : PubMed/NCBI

103 

Fuster V: Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation. 90:2126–2146. 1994.PubMed/NCBI

104 

Davies MJ, Richardson PD, Woolf N, Katz DR and Mann J: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J. 69:377–381. 1993. View Article : Google Scholar : PubMed/NCBI

105 

Geng YJ and Libby P: Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 147:251–266. 1995.PubMed/NCBI

106 

Sedding DG, Widmer-Teske R, Mueller A, et al: Role of the phosphatase PTEN in early vascular remodeling. PloS One. 8:e554452013. View Article : Google Scholar : PubMed/NCBI

107 

Geng YJ: Molecular signal transduction in vascular cell apoptosis. Cell Res. 11:253–264. 2001. View Article : Google Scholar : PubMed/NCBI

108 

Clowes AW, Clowes MM, Fingerle J and Reidy MA: Regulation of smooth muscle cell growth in injured artery. J Cardiovasc Pharmacol. 14(Suppl 6): S12–S15. 1989. View Article : Google Scholar : PubMed/NCBI

109 

Li W, Liu G, Chou IN and Kagan HM: Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J Cell Biochem. 78:550–557. 2000. View Article : Google Scholar : PubMed/NCBI

110 

Lazarus HM, Cruikshank WW, Narasimhan N, Kagan HM and Center DM: Induction of human monocyte motility by lysyl oxidase. Matrix Biol. 14:727–731. 1995. View Article : Google Scholar : PubMed/NCBI

111 

Kothapalli D, Liu SL, Bae YH, et al: Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. Cell Rep. 2:1259–1271. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Iyemere VP, Proudfoot D, Weissberg PL and Shanahan CM: Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med. 260:192–210. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Du Y, Gao C, Liu Z, et al: Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification. Arterioscler Thromb Vasc Biol. 32:2580–2588. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Wang L, Zheng J, Bai X, et al: ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 104:688–698. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Liu CJ, Kong W, Ilalov K, et al: ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J. 20:988–990. 2006. View Article : Google Scholar

116 

Du Y, Wang Y, Wang L, et al: Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ Res. 108:917–928. 2011. View Article : Google Scholar : PubMed/NCBI

117 

Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L and Natarajan R: Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes. 59:2904–2915. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR and Hofbauer LC: miR-125b regulates calcification of vascular smooth muscle cells. Ame J Pathol. 179:1594–1600. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Zhu F, Friedman MS, Luo W, Woolf P and Hankenson KD: The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol. 227:2677–2685. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu X and Li Z: MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review). Int J Mol Med 34: 923-933, 2014.
APA
Yu, X., & Li, Z. (2014). MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review). International Journal of Molecular Medicine, 34, 923-933. https://doi.org/10.3892/ijmm.2014.1853
MLA
Yu, X., Li, Z."MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review)". International Journal of Molecular Medicine 34.4 (2014): 923-933.
Chicago
Yu, X., Li, Z."MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review)". International Journal of Molecular Medicine 34, no. 4 (2014): 923-933. https://doi.org/10.3892/ijmm.2014.1853
Copy and paste a formatted citation
x
Spandidos Publications style
Yu X and Li Z: MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review). Int J Mol Med 34: 923-933, 2014.
APA
Yu, X., & Li, Z. (2014). MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review). International Journal of Molecular Medicine, 34, 923-933. https://doi.org/10.3892/ijmm.2014.1853
MLA
Yu, X., Li, Z."MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review)". International Journal of Molecular Medicine 34.4 (2014): 923-933.
Chicago
Yu, X., Li, Z."MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review)". International Journal of Molecular Medicine 34, no. 4 (2014): 923-933. https://doi.org/10.3892/ijmm.2014.1853
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team