1
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
3
|
Suda T, Arai F and Shimmura S: Regulation
of stem cells in the niche. Cornea. 24:S12–S17. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yancopoulos GD, Davis S, Gale NW, Rudge
JS, Wiegand SJ and Holash J: Vascular-specific growth factors and
blood vessel formation. Nature. 407:242–248. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hato T, Tabata M and Oike Y: The role of
angiopoietin-like proteins in angiogenesis and metabolism. Trends
Cardiovasc Med. 18:6–14. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tabata M, Kadomatsu T, Fukuhara S, et al:
Angiopoietin-like protein 2 promotes chronic adipose tissue
inflammation and obesity-related systemic insulin resistance. Cell
Metab. 10:178–188. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tazume H, Miyata K, Tian Z, et al:
Macrophage-derived angiopoietin-like protein 2 accelerates
development of abdominal aortic aneurysm. Arterioscler Thromb Vasc
Biol. 32:1400–1409. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Okada T, Tsukano H, Endo M, et al:
Synoviocyte-derived angiopoietin-like protein 2 contributes to
synovial chronic inflammation in rheumatoid arthritis. Am J Pathol.
176:2309–2319. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Aoi J, Endo M, Kadomatsu T, et al:
Angiopoietin-like protein 2 is an important facilitator of
inflammatory carcinogenesis and metastasis. Cancer Res.
71:7502–7512. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Endo M, Nakano M, Kadomatsu T, et al:
Tumor cell-derived angiopoietin-like protein ANGPTL2 is a critical
driver of metastasis. Cancer Res. 72:1784–1794. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sasaki H, Suzuki A, Shitara M, et al:
Angiopoietin-like protein ANGPTL2 gene expression is
correlated with lymph node metastasis in lung cancer. Oncol Lett.
4:1325–1328. 2012.
|
12
|
Kikuchi R, Tsuda H, Kozaki K, et al:
Frequent inactivation of a putative tumor suppressor,
angiopoietin-like protein 2, in ovarian cancer. Cancer Res.
68:5067–5075. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schetter AJ and Harris CC: Alterations of
microRNAs contribute to colon carcinogenesis. Semin Oncol.
38:734–742. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu WK, Law PT, Lee CW, et al: MicroRNA in
colorectal cancer: from benchtop to bedside. Carcinogenesis.
32:247–253. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Q, Zou C, Zou C, et al: MicroRNA-25
functions as a potential tumor suppressor in colon cancer by
targeting Smad7. Cancer Lett. 335:168–174. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Arocho A, Chen B, Ladanyi M and Pan Q:
Validation of the 2-DeltaDeltaCt calculation as an alternate method
of data analysis for quantitative PCR of BCR-ABL P210 transcripts.
Diagn Mol Pathol. 15:56–61. 2006.PubMed/NCBI
|
17
|
Jiang X, Yue J, Lu H, et al: Inhibition of
filamin-A reduces cancer metastatic potential. Int J Biol Sci.
9:67–77. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Aspenström P, Fransson A and Saras J: Rho
GTPases have diverse effects on the organization of the actin
filament system. Biochem J. 377:327–337. 2004.PubMed/NCBI
|
19
|
Saadoun S, Papadopoulos MC, Hara-Chikuma M
and Verkman AS: Impairment of angiogenesis and cell migration by
targeted aquaporin-1 gene disruption. Nature. 434:786–792. 2005.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Lai AZ, Durrant M, Zuo D, Ratcliffe CD and
Park M: Met kinase-dependent loss of the E3 ligase Cbl in gastric
cancer. J Biol Chem. 287:8048–8059. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Baldwin A, Huh KW and Munger K: Human
papillomavirus E7 oncoprotein dysregulates steroid receptor
coactivator 1 localization and function. J Virol. 80:6669–6677.
2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hill R, Calvopina JH, Kim C, et al: PTEN
loss accelerates KrasG12D-induced pancreatic cancer development.
Cancer Res. 70:7114–7124. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Woods NT, Yamaguchi H, Lee FY, Bhalla KN
and Wang HG: Anoikis, initiated by Mcl-1 degradation and Bim
induction, is deregulated during oncogenesis. Cancer Res.
67:10744–10752. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kadera BE, Li L, Toste PA, et al:
MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated
fibroblasts promotes metastasis. PLoS One. 8:e719782013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dahlhaus M, Schult C, Lange S, Freund M
and Junghanss C: MicroRNA 181a influences the expression of HMGB1
and CD4 in acute Leukemias. Anticancer Res. 33:445–452.
2013.PubMed/NCBI
|
26
|
Sandhu R, Rivenbark AG and Coleman WB:
Loss of post-transcriptional regulation of DNMT3b by
microRNAs: A possible molecular mechanism for the hypermethylation
defect observed in a subset of breast cancer cell lines. Int J
Oncol. 41:721–732. 2012.PubMed/NCBI
|
27
|
Fang JY, Lu J, Chen YX and Yang L: Effects
of DNA methylation on expression of tumor suppressor genes and
proto-oncogene in human colon cancer cell lines. World J
Gastroenterol. 9:1976–1980. 2003.PubMed/NCBI
|
28
|
Pakneshan P, Szyf M and Rabbani SA:
Methylation and inhibition of expression of uPA by the RAS
oncogene: divergence of growth control and invasion in breast
cancer cells. Carcinogenesis. 26:557–564. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chien CH and Chow SN: Point mutation of
the ras oncogene in human ovarian cancer. DNA Cell Biol.
12:623–627. 1993. View Article : Google Scholar : PubMed/NCBI
|
30
|
Beger M, Butz K, Denk C, Williams T, Hurst
HC and Hoppe-Seyler F: Expression pattern of AP-2 transcription
factors in cervical cancer cells and analysis of their influence on
human papillomavirus oncogene transcription. J Mol Med (Berl).
79:314–320. 2001. View Article : Google Scholar
|
31
|
Patel JB, Appaiah HN, Burnett RM, et al:
Control of EVI-1 oncogene expression in metastatic breast cancer
cells through microRNA miR-22. Oncogene. 30:1290–1301. 2011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Shenouda SK and Alahari SK: MicroRNA
function in cancer: oncogene or a tumor suppressor? Cancer
Metastasis Rev. 28:369–378. 2009.PubMed/NCBI
|
33
|
Lukiw WJ and Alexandrov PN: Regulation of
complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease
(AD) brain. Mol Neurobiol. 46:11–19. 2012.PubMed/NCBI
|
34
|
Esposito F, Tornincasa M, Pallante P, et
al: Down-regulation of the miR-25 and miR-30d contributes to the
development of anaplastic thyroid carcinoma targeting the polycomb
protein EZH2. J Clin Endocrinol Metab. 97:E710–E718. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Razumilava N, Bronk SF, Smoot RL, et al:
miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death
receptor-4 and promotes apoptosis resistance in cholangiocarcinoma.
Hepatology. 55:465–475. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang H, Zuo Z, Lu X, Wang L, Wang H and
Zhu Z: miR-25 regulates apoptosis by targeting Bim in human ovarian
cancer. Oncol Rep. 27:594–598. 2012.PubMed/NCBI
|
37
|
Rodríguez-Aznar E, Barrallo-Gimeno A and
Nieto MA: Scratch2 prevents cell cycle re-entry by repressing
miR-25 in postmitotic primary neurons. J Neurosci. 33:5095–5105.
2013.PubMed/NCBI
|
38
|
Lu D, Davis MP, Abreu-Goodger C, et al:
miR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse
fibroblast cells to iPSCs. PLoS One. 7:e409382012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhu Z, He J, Jia X, et al: MicroRNA-25
functions in regulation of pigmentation by targeting the
transcription factor MITF in alpaca (Lama pacos) skin
melanocytes. Domest Anim Endocrinol. 38:200–209. 2010. View Article : Google Scholar : PubMed/NCBI
|