1
|
Tzahar E, Waterman H, Chen X, Levkowitz G,
Karunagaran D, Lavi S, Ratzkin BJ and Yarden Y: A hierarchical
network of interreceptor interactions determines signal
transduction by Neu differentiation factor/neuregulin and epidermal
growth factor. Mol Cell Biol. 16:5276–5287. 1996.
|
2
|
Graus-Porta D, Beerli RR, Daly JM and
Hynes NE: ErbB-2, the preferred heterodimerization partner of all
ErbB receptors, is a mediator of lateral signaling. EMBO J.
16:1647–1655. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yarden Y and Sliwkowski MX: Untangling the
ErbB signalling network. Nat Rev Mol Cell Biol. 2:127–137. 2001.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Slamon DJ, Godolphin W, Jones LA, et al:
Studies of the HER-2/neu proto-oncogene in human breast and ovarian
cancer. Science. 244:707–712. 1989. View Article : Google Scholar : PubMed/NCBI
|
5
|
Berchuck A, Kamel A, Whitaker R, et al:
Overexpression of HER-2/neu is associated with poor survival in
advanced epithelial ovarian cancer. Cancer Res. 50:4087–4091.
1990.PubMed/NCBI
|
6
|
Slamon DJ, Clark GM, Wong SG, Levin WJ,
Ullrich A and McGuire WL: Human breast cancer: correlation of
relapse and survival with amplification of the HER-2/neu oncogene.
Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim R, Tanabe K, Uchida Y, Osaki A and
Toge T: The role of HER-2 oncoprotein in drug-sensitivity in breast
cancer. Oncol Rep. 9:3–9. 2002.PubMed/NCBI
|
8
|
Pero SC, Shukla GS, Armstrong AL, Peterson
D, Fuller SP, Godin K, Kingsley-Richards SL, Weaver DL, Bond J and
Krag DN: Identification of a small peptide that inhibits the
phosphorylation of ErbB2 and proliferation of ErbB2 overexpressing
breast cancer cells. Int J Cancer. 111:951–960. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hashizume T, Fukuda T, Nagaoka T, Tada H,
Yamada H, Watanabe K, Salomon DS and Seno M: Cell type dependent
endocytic internalization of ErbB2 with an artificial peptide
ligand that binds to ErbB2. Cell Biol Int. 32:814–826. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Han XJ, Sun LF, Nishiyama Y, Feng B,
Michiue H, Seno M, Matsui H and Tomizawa K: Theranostic protein
targeting ErbB2 for bioluminescence imaging and therapy for cancer.
PLoS One. 8:e752882013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vaidyanath A, Hashizume T, Nagaoka T,
Takeyasu N, Satoh H, Chen L, Wang J, Kasai T, Kudoh T, Satoh A, Fu
L and Seno M: Enhanced internalization of ErbB2 in SK-BR-3 cells
with multivalent forms of an artificial ligand. J Cell Mol Med.
15:2525–2538. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tannous BA: Gaussia luciferase
reporter assay for monitoring biological processes in culture and
in vivo. Nat Protoc. 4:582–591. 2009. View Article : Google Scholar
|
13
|
Lembert N and Idahl LA: Regulatory effects
of ATP and luciferin on firefly luciferase activity. Biochem J.
305:929–933. 1995.PubMed/NCBI
|
14
|
Matthews JC, Hori K and Cormier MJ:
Substrate and substrate analogue binding properties of
Renilla luciferase. Biochemistry. 16:5217–5220. 1977.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Lorenz WW, McCann RO, Longiaru M and
Cormier MJ: Isolation and expression of a cDNA encoding
Renilla reniformis luciferase. Proc Natl Acad Sci USA.
88:4438–4442. 1991. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tannous BA, Kim DE, Fernandez JL,
Weissleder R and Breakefield XO: Codon-optimized Gaussia
luciferase cDNA for mammalian gene expression in culture and in
vivo. Mol Ther. 11:435–443. 2005.PubMed/NCBI
|
17
|
Venisnik KM, Olafsen T, Gambhir SS and Wu
AM: Fusion of Gaussia luciferase to an engineered
anti-carcinoembryonic antigen (CEA) antibody for in vivo optical
imaging. Mol Imaging Biol. 9:267–277. 2007.PubMed/NCBI
|
18
|
Feng B, Tomizawa K, Michiue H, Han XJ,
Miyatake S and Matsui H: Development of a bifunctional
immunoliposome system for combined drug delivery and imaging in
vivo. Biomaterials. 31:4139–4145. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hyodo K, Yamamoto E, Suzuki T, Kikuchi H,
Asano M and Ishihara H: Development of liposomal anticancer drugs.
Biol Pharm Bull. 36:703–707. 2013. View Article : Google Scholar
|
20
|
Oude Blenke E, Mastrobattista E and
Schiffelers RM: Strategies for triggered drug release from tumor
targeted liposomes. Expert Opin Drug Deliv. 10:1399–1410.
2013.PubMed/NCBI
|
21
|
Yamada T, Iwasaki Y, Tada H, Iwabuki H,
Chuah MK, VandenDriessche T, Fukuda H, Kondo A, Ueda M, Seno M,
Tanizawa K and Kuroda S: Nanoparticles for the delivery of genes
and drugs to human hepatocytes. Nat Biotechnol. 21:885–890. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Feng B, Tomizawa K, Michiue H, Miyatake S,
Han XJ, Fujimura A, Seno M, Kirihata M and Matsui H: Delivery of
sodium borocaptate to glioma cells using immunoliposome conjugated
with anti-EGFR antibodies by ZZ-His. Biomaterials. 30:1746–1755.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tsutsui Y, Tomizawa K, Nagita M, Michiue
H, Nishiki T, Ohmori I, Seno M and Matsui H: Development of
bionanocapsules targeting brain tumors. J Control Release.
122:159–164. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Woodle MC and Lasic DD: Sterically
stabilized liposomes. Biochim Biophys Acta. 1113:171–199. 1992.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Duncan R: Polymer conjugates as anticancer
nanomedicines. Nat Rev Cancer. 6:688–701. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiang W, Kim BY, Rutka JT and Chan WC:
Advances and challenges of nanotechnology-based drug delivery
systems. Expert Opin Drug Deliv. 4:621–633. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jemal A, Murray T, Samuels A, Ghafoor A,
Ward E and Thun MJ: Cancer statistics, 2003. CA Cancer J Clin.
53:5–26. 2003. View Article : Google Scholar
|
28
|
Rose PG, Piver MS, Tsukada Y and Lau TS:
Metastatic patterns in histologic variants of ovarian cancer. An
autopsy study. Cancer. 64:1508–1513. 1989. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jiang Y, Berk M, Singh LS, Tan H, Yin L,
Powell CT and Xu Y: KiSS1 suppresses metastasis in human ovarian
cancer via inhibition of protein kinase C alpha. Clin Exp
Metastasis. 22:369–376. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Richter M and Zhang H: Receptor-targeted
cancer therapy. DNA Cell Biol. 24:271–282. 2005. View Article : Google Scholar
|
31
|
Haberkorn U, Markert A, Eisenhut M, Mier W
and Altmann A: Development of molecular techniques for imaging and
treatment of tumors. Q J Nucl Med Mol Imaging. 55:655–670.
2011.PubMed/NCBI
|
32
|
Jiang W, Kim BY, Rutka JT and Chan WC:
Nanoparticle-mediated cellular response is size-dependent. Nat
Nanotechnol. 3:145–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kapp KS, Kapp DS, Poschauko J,
Stücklschweiger GF, Hackl A, Pickel H, Petru E and Winter R: The
prognostic significance of peritoneal seeding and size of
postsurgical residual in patients with stage III epithelial ovarian
cancer treated with surgery, chemotherapy, and high-dose
radiotherapy. Gynecol Oncol. 74:400–407. 1999. View Article : Google Scholar
|
34
|
Del Vecchio S, Zannetti A, Fonti R, Pace L
and Salvatore M: Nuclear imaging in cancer theranostics. Q J Nucl
Med Mol Imaging. 51:152–163. 2007.
|
35
|
Yu MK, Park J and Jon S: Targeting
strategies for multifunctional nanoparticles in cancer imaging and
therapy. Theranostics. 2:3–44. 2012. View Article : Google Scholar : PubMed/NCBI
|