1
|
Cesana M, Cacchiarelli D, Legnini I,
Santini T, Sthandier O, Chinappi M, Tramontano A and Bozzoni I: A
long noncoding RNA controls muscle differentiation by functioning
as a competing endogenous RNA. Cell. 147:358–369. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu
P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon
GJ and He L: miR-34 miRNAs provide a barrier for somatic cell
reprogramming. Nat Cell Biol. 13:1353–1360. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang G, Kwan BC, Lai FM, Chow KM, Li PK
and Szeto CC: Urinary miR-21, miR-29, and miR-93: novel biomarkers
of fibrosis. Am J Nephrol. 36:412–418. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lekgabe ED, Kiriazis H, Zhao C, Xu Q,
Moore XL, Su Y, Bathgate RA, Du XJ and Samuel CS: Relaxin reverses
cardiac and renal fibrosis in spontaneously hypertensive rats.
Hypertension. 46:412–418. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cheng HF, Wang JL, Vinson GP and Harris
RC: Young SHR express increased type 1 angiotensin II receptors in
renal proximal tubule. Am J Physiol. 274:F10–F17. 1998.PubMed/NCBI
|
6
|
Matsushima Y, Kawamura M, Akabane S,
Imanishi M, Kuramochi M, Ito K and Omae T: Increases in renal
angiotensin II content and tubular angiotensin II receptors in
prehypertensive spontaneously hypertensive rats. J Hypertens.
6:791–796. 1988. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mezzano SA, Ruiz-Ortega M and Egido J:
Angiotensin II and renal fibrosis. Hypertension. 38:635–638. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jimenez E, Perez de la Blanca E, Urso L,
Gonzalez I, Salas J and Montiel M: Angiotensin II induces MMP 2
activity via FAK/JNK pathway in human endothelial cells. Biochem
Biophys Res Commun. 380:769–774. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lavoz C, Rodrigues-Diez R, Benito-Martin
A, Rayego-Mateos S, Rodrigues-Diez RR, Alique M, Ortiz A, Mezzano
S, Egido J and Ruiz-Ortega M: Angiotensin II contributes to renal
fibrosis independently of Notch pathway activation. PLoS One.
7:e404902012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pons M, Cousins SW, Alcazar O, Striker GE
and Marin-Castano ME: Angiotensin II-induced MMP-2 activity and
MMP-14 and basigin protein expression are mediated via the
angiotensin II receptor type 1-mitogen-activated protein kinase 1
pathway in retinal pigment epithelium: implications for age-related
macular degeneration. Am J Pathol. 178:2665–2681. 2011. View Article : Google Scholar
|
12
|
Zhong J, Guo D, Chen CB, Wang W, Schuster
M, Loibner H, Penninger JM, Scholey JW, Kassiri Z and Oudit GY:
Prevention of angiotensin II-mediated renal oxidative stress,
inflammation, and fibrosis by angiotensin-converting enzyme 2.
Hypertension. 57:314–322. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cushing L, Kuang PP, Qian J, Shao F, Wu J,
Little F, Thannickal VJ, Cardoso WV and Lu J: miR-29 is a major
regulator of genes associated with pulmonary fibrosis. Am J Respir
Cell Mol Biol. 45:287–294. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qin W, Chung AC, Huang XR, Meng XM, Hui
DS, Yu CM, Sung JJ and Lan HY: TGF-β/Smad3 signaling promotes renal
fibrosis by inhibiting miR-29. J Am Soc Nephrol. 22:1462–1474.
2011.
|
15
|
Roderburg C, Urban GW, Bettermann K, Vucur
M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi
M, Tacke F, Trautwein C and Luedde T: Micro-RNA profiling reveals a
role for miR-29 in human and murine liver fibrosis. Hepatology.
53:209–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu GX, Li YQ, Huang XR, Wei L, Chen HY,
Shi YJ, Heuchel RL and Lan HY: Disruption of Smad7 promotes ANG
II-mediated renal inflammation and fibrosis via Sp1-TGF-β/Smad3-NF.
κB-dependent mechanisms in mice. PLoS One. 8:e535732013.PubMed/NCBI
|
17
|
Han Y, Runge MS and Brasier AR:
Angiotensin II induces interleukin-6 transcription in vascular
smooth muscle cells through pleiotropic activation of nuclear
factor-κB transcription factors. Circ Res. 84:695–703.
1999.PubMed/NCBI
|
18
|
Kranzhofer R, Schmidt J, Pfeiffer CA, Hagl
S, Libby P and Kubler W: Angiotensin induces inflammatory
activation of human vascular smooth muscle cells. Arterioscler
Thromb Vasc Biol. 19:1623–1629. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang H, Garzon R, Sun H, Ladner KJ, Singh
R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM
and Guttridge DC: NF-κB-YY1-miR-29 regulatory circuitry in skeletal
myogenesis and rhabdomyosarcoma. Cancer Cell. 14:369–381. 2008.
|
20
|
Chang TC, Yu D, Lee YS, Wentzel EA, Arking
DE, West KM, Dang CV, Thomas-Tikhonenko A and Mendell JT:
Widespread microRNA repression by Myc contributes to tumorigenesis.
Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mott JL, Kurita S, Cazanave SC, Bronk SF,
Wemeburg NW and Femandez-Zapico ME: Transcriptional suppression of
mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J
Cell Biochem. 110:1155–1164. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sadoshima J and Izumo S: Signal
transduction pathways of angiotensin II - induced c-fos gene
expression in cardiac myocytes in vitro. Roles of
phospholipid-derived second messengers. Circ Res. 73:424–438. 1993.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kopp JB: TGF-β signaling and the renal
tubular epithelial cell: too much, too little, and just right. J Am
Soc Nephrol. 21:1241–1243. 2010.
|
24
|
Meng XM, Huang XR, Chung AC, Qin W, Shao
X, Igarashi P, Ju W, Bottinger EP and Lan HY: Smad2 protects
against TGF-β/Smad3-mediated renal fibrosis. J Am Soc Nephrol.
21:1477–1487. 2010.
|
25
|
Chung AC, Yu X and Lan HY: MicroRNA and
nephropathy: emerging concepts. Int J Nephrol Renovasc Dis.
6:169–179. 2013.PubMed/NCBI
|
26
|
Patel V and Noureddine L: MicroRNAs and
fibrosis. Curr Opin Nephrol Hypertens. 21:410–416. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fort A, Borel C, Migliavacca E,
Antonarakis SE, Fish RJ and Neerman-Arbez M: Regulation of
fibrinogen production by microRNAs. Blood. 116:2608–2615. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Villarreal G Jr, Oh DJ, Kang MH and Rhee
DJ: Coordinated regulation of extracellular matrix synthesis by the
microRNA-29 family in the trabecular meshwork. Invest Ophthalmol
Vis Sci. 52:3391–3397. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kapinas K, Kessler CB and Delany AM:
miR-29 suppression of osteonectin in osteoblasts: regulation during
differentiation and by canonical Wnt signaling. J Cell Biochem.
108:216–224. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Inoki K, Haneda M, Ishida T, Mori H, Maeda
S, Koya D, Sugimoto T and Kikkawa R: Role of mitogen-activated
protein kinases as downstream effectors of transforming growth
factor-beta in mesangial cells. Kidney Int Suppl. 77:S76–S80. 2000.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Luna C, Li G, Qiu J, Epstein DL and
Gonzalez P: Cross-talk between miR-29 and transforming growth
factor-betas in trabecular meshwork cells. Invest Ophthalmol Vis
Sci. 52:3567–3572. 2011. View Article : Google Scholar : PubMed/NCBI
|