1
|
Schwartz PE: Current diagnosis and
treatment modalities for ovarian cancer. Cancer Treat Res.
107:99–118. 2002.PubMed/NCBI
|
2
|
Cho KR and Shih IeM: Ovarian cancer. Annu
Rev Pathol. 4:287–313. 2009. View Article : Google Scholar
|
3
|
Sudo T: Molecular-targeted therapies for
ovarian cancer: prospects for the future. Int J Clin Oncol.
17:424–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Foster R, Buckanovich RJ and Rueda BR:
Ovarian cancer stem cells: working towards the root of stemness.
Cancer Lett. 338:147–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
6
|
Dean M, Fojo T and Bates S: Tumour stem
cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005.
View Article : Google Scholar
|
7
|
Dalerba P, Cho RW and Clarke MF: Cancer
stem cells: models and concepts. Annu Rev Med. 58:267–284. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Nguyen LV, Vanner R, Dirks P and Eaves CJ:
Cancer stem cells: an evolving concept. Nat Rev Cancer. 12:133–143.
2012.PubMed/NCBI
|
9
|
Chen J, Li Y, Yu TS, McKay RM, Burns DK,
Kernie SG and Parada LF: A restricted cell population propagates
glioblastoma growth after chemotherapy. Nature. 488:522–526. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Driessens G, Beck B, Caauwe A, Simons BD
and Blanpain C: Defining the mode of tumour growth by clonal
analysis. Nature. 488:527–530. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bapat SA, Mali AM, Koppikar CB and Kurrey
NK: Stem and progenitor-like cells contribute to the aggressive
behavior of human epithelial ovarian cancer. Cancer Res.
65:3025–3029. 2005.PubMed/NCBI
|
12
|
Szotek PP, Pieretti-Vanmarcke R, Masiakos
PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, et al:
Ovarian cancer side population defines cells with stem cell-like
characteristics and Mullerian Inhibiting Substance responsiveness.
Proc Natl Acad Sci USA. 103:11154–11159. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang S, Balch C, Chan MW, Lai HC, Matei
D, Schilder JM, Yan PS, et al: Identification and characterization
of ovarian cancer-initiating cells from primary human tumors.
Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kondo T, Setoguchi T and Taga T:
Persistence of a small subpopulation of cancer stem-like cells in
the C6 glioma cell line. Proc Natl Acad Sci USA. 101:781–786. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Patrawala L, Calhoun T,
Schneider-Broussard R, Zhou J, Claypool K and Tang DG: Side
population is enriched in tumorigenic, stem-like cancer cells,
whereas ABCG2+ and ABCG2− cancer cells are
similarly tumorigenic. Cancer Res. 65:6207–6219. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Calcagno AM, Fostel JM, To KK, Salcido CD,
Martin SE, Chewning KJ, Wu CP, et al: Single-step
doxorubicin-selected cancer cells overexpress the ABCG2 drug
transporter through epigenetic changes. Br J Cancer. 98:1515–1524.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Schmandt RE, Broaddus R, Lu KH, Shvartsman
H, Thornton A, Malpica A, Sun C, et al: Expression of c-ABL, c-KIT,
and platelet-derived growth factor receptor-β in ovarian serous
carcinoma and normal ovarian surface epithelium. Cancer.
98:758–764. 2003.
|
18
|
Ma L, Lai D, Liu T, Cheng W and Guo L:
Cancer stem-like cells can be isolated with drug selection in human
ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin.
42:593–602. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lai D, Wang F, Chen Y, Wang C, Liu S, Lu
B, Ge X, et al: Human ovarian cancer stem-like cells can be
efficiently killed by γδ T lymphocytes. Cancer Immunol Immunother.
61:979–989. 2012.PubMed/NCBI
|
20
|
Liu T, Cheng W, Lai D, Huang Y and Guo L:
Characterization of primary ovarian cancer cells in different
culture systems. Oncol Rep. 23:1277–1284. 2010.PubMed/NCBI
|
21
|
Luo X, Dong Z, Chen Y, Yang L and Lai D:
Enrichment of ovarian cancer stem-like cells is associated with
epithelial to mesenchymal transition through an miRNA-activated AKT
pathway. Cell Prolif. 46:436–446. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Raistrick H and Smith G: Studies in the
biochemistry of micro- organisms: the metabolic products of
Aspergillus terreus Thom. A new mould metabolic
product-terrein. Biochem J. 29:606–611. 1935.PubMed/NCBI
|
23
|
Ghisalberti EL, Narbey MJ and Rowland CY:
Metabolites of Aspergillus terreus antagonistic towards the
take-all fungus. J Nat Prod. 53:520–522. 1990.
|
24
|
Arakawa M, Someno T, Kawada M and Ikeda D:
A new terrein glucoside, a novel inhibitor of angiogenin secretion
in tumor angiogenesis. J Antibiot (Tokyo). 61:442–448. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH,
Huh CH, Youn SW, Yoo ID and Park KC: Terrein: a new melanogenesis
inhibitor and its mechanism. Cell Mol Life Sci. 61:2878–2885. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Phattanawasin P, Pojchanakom K, Sotanaphun
U, Piyapolrungroj N and Zungsontiporn S: Weed growth inhibitors
from Aspergillus fischeri TISTR 3272. Nat Prod Res.
21:1286–1291. 2007.PubMed/NCBI
|
27
|
Kim DS, Cho HJ, Lee HK, Lee WH, Park ES,
Youn SW and Park KC: Terrein, a fungal metabolite, inhibits the
epidermal proliferation of skin equivalents. J Dermatol Sci.
46:65–68. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee JC, Yu MK, Lee R, Lee YH, Jeon JG, Lee
MH, Jhee EC, Yoo ID and Yi HK: Terrein reduces pulpal inflammation
in human dental pulp cells. J Endod. 34:433–437. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee YH, Lee NH, Bhattarai G, Oh YT, Yu MK,
Yoo ID, Jhee EC and Yi HK: Enhancement of osteoblast
biocompatibility on titanium surface with Terrein treatment.
Cell Biochem Funct. 28:678–685. 2010. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Kim DS, Lee HK, Park SH, Lee S, Ryoo IJ,
Kim WG, Yoo ID, et al: Terrein inhibits keratinocyte proliferation
via ERK inactivation and G2/M cell cycle arrest. Exp
Dermatol. 17:312–317. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xu B, Yin Y, Zhang F, Li Z and Wang L:
Operating conditions optimization for (+)-terrein production in a
stirred bioreactor by Aspergillus terreus strain PF-26 from
marine sponge Phakellia fusca. Bioprocess Biosyst Eng.
35:1651–1655. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yin Y, Gao Q, Zhang F and Li Z: Medium
optimization for the high yield production of single (+)-terrein by
Aspergillus terreus strain PF26 derived from marine sponge
Phakellia fusca. Process Biochem. 47:887–891. 2012.
View Article : Google Scholar
|
33
|
Chen YF, Dong Z, Xia Y, Tang J, Peng L,
Wang S and Lai D: Nucleoside analog inhibits microRNA-214 through
targeting heat-shock factor 1 in human epithelial ovarian cancer.
Cancer Sci. 104:1683–1689. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cicenas J and Valius M: The CDK inhibitors
in cancer research and therapy. J Cancer Res Clin Oncol.
137:1409–1418. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Collins I and Garrett MD: Targeting the
cell division cycle in cancer: CDK and cell cycle checkpoint kinase
inhibitors. Curr Opin Pharmacol. 5:366–373. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hafner M, Max KE, Bandaru P, Morozov P,
Gerstberger S, Brown M, Molina H and Tuschl T: Identification of
mRNAs bound and regulated by human LIN28 proteins and molecular
requirements for RNA recognition. RNA. 19:613–626. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li N, Zhong X, Lin X, Guo J, Zou L, Tanyi
JL, Shao Z, et al: Lin-28 homologue A (LIN28A) promotes cell cycle
progression via regulation of cyclin-dependent kinase 2 (CDK2),
cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A)
expression in cancer. J Biol Chem. 287:17386–17397. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Moss EG, Lee RC and Ambros V: The cold
shock domain protein LIN-28 controls developmental timing in C.
elegans and is regulated by the lin-4 RNA. Cell.
88:637–646. 1997. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shyh-Chang N and Daley GQ: Lin28: primal
regulator of growth and metabolism in stem cells. Cell Stem Cell.
12:395–406. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xu B, Zhang K and Huang Y: Lin28 modulates
cell growth and associates with a subset of cell cycle regulator
mRNAs in mouse embryonic stem cells. RNA. 15:357–361. 2009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Viswanathan SR, Powers JT, Einhorn W,
Hoshida Y, Ng TL, Toffanin S, O’Sullivan M, et al: Lin28 promotes
transformation and is associated with advanced human malignancies.
Nat Genet. 41:843–848. 2009. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Lu L, Katsaros D, Shaverdashvili K, Qian
B, Wu Y, de la Longrais IA, Preti M, et al: Pluripotent factor
lin-28 and its homologue lin-28b in epithelial ovarian cancer and
their associations with disease outcomes and expression of let-7a
and IGF-II. Eur J Cancer. 45:2212–2218. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Peng S, Maihle NJ and Huang Y:
Pluripotency factors Lin28 and Oct4 identify a sub-population of
stem cell-like cells in ovarian cancer. Oncogene. 29:2153–2159.
2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yang X, Lin X, Zhong X, Kaur S, Li N,
Liang S, Lassus H, et al: Double-negative feedback loop between
reprogramming factor LIN28 and microRNA let-7 regulates aldehyde
dehydrogenase 1-positive cancer stem cells. Cancer Res.
70:9463–9472. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ma W, Ma J, Xu J, Qiao C, Branscum A,
Cardenas A, Baron AT, et al: Lin28 regulates BMP4 and functions
with Oct4 to affect ovarian tumor microenvironment. Cell Cycle.
12:88–97. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sanchez-Garcia I, Vicente-Duenas C and
Cobaleda C: The theoretical basis of cancer-stem-cell-based
therapeutics of cancer: can it be put into practice? Bioessays.
29:1269–1280. 2007. View Article : Google Scholar : PubMed/NCBI
|