1
|
Sørlie T, Perou CM, Tibshirani R, et al:
Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. Proc Natl Acad Sci USA.
98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sorlie T, Tibshirani R, Parker J, et al:
Repeated observation of breast tumor subtypes in independent gene
expression data sets. Proc Natl Acad Sci USA. 100:8418–8423. 2003.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kao J, Salari K, Bocanegra M, et al:
Molecular profiling of breast cancer cell lines defines relevant
tumor models and provides a resource for cancer gene discovery.
PLoS One. 4:e61462009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tran B and Bedard PL: Luminal-B breast
cancer and novel therapeutic targets. Breast Cancer Res.
13:2212011. View
Article : Google Scholar
|
5
|
Cadoo KA, Fornier MN and Morris PG:
Biological subtypes of breast cancer: current concepts and
implications for recurrence patterns. Q J Nucl Med Mol Imaging.
57:312–321. 2013.PubMed/NCBI
|
6
|
Rouzier R, Perou CM, Symmans WF, et al:
Breast cancer molecular subtypes respond differently to
preoperative chemotherapy. Clin Cancer Res. 11:5678–5685. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Sandberg R, Neilson JR, Sarma A, Sharp PA
and Burge CB: Proliferating cells express mRNAs with shortened 3′
untranslated regions and fewer microRNA target sites. Science.
320:1643–1647. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mayr C and Bartel DP: Widespread
shortening of 3′UTRs by alternative cleavage and polyadenylation
activates oncogenes in cancer cells. Cell. 138:673–684. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Vlasova IA, Tahoe NM, Fan D, et al:
Conserved GU-rich elements mediate mRNA decay by binding to
CUG-binding protein 1. Mol Cell. 29:263–270. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tian B, Hu J, Zhang H and Lutz CS: A
large-scale analysis of mRNA polyadenylation of human and mouse
genes. Nucleic Acids Res. 33:201–212. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang ET, Sandberg R, Luo S, et al:
Alternative isoform regulation in human tissue transcriptomes.
Nature. 456:470–476. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pickrell JK, Marioni JC, Pai AA, et al:
Understanding mechanisms underlying human gene expression variation
with RNA sequencing. Nature. 464:768–772. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mangone M, Manoharan AP, Thierry-Mieg D,
et al: The landscape of C. elegans 3′UTRs. Science. 329:432–435.
2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jan CH, Friedman RC, Ruby JG and Bartel
DP: Formation, regulation and evolution of Caenorhabditis elegans
3′UTRs. Nature. 469:97–101. 2011. View Article : Google Scholar :
|
15
|
Fu Y, Sun Y, Li Y, Rao X, Chen C and Xu A:
Differential genome-wide profiling of tandem 3′ UTRs among human
breast cancer and normal cells by high-throughput sequencing.
Genome Res. 21:741–747. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ozsolak F, Kapranov P, Foissac S, et al:
Comprehensive polyadenylation site maps in yeast and human reveal
pervasive alternative polyadenylation. Cell. 143:1018–1029. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Subtelny AO, Eichhorn SW, Chen GR, Sive H
and Bartel DP: Poly(A)-tail profiling reveals an embryonic switch
in translational control. Nature. 508:66–71. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun Y, Fu Y, Li Y and Xu A: Genome-wide
alternative polyadenylation in animals: insights from
high-throughput technologies. J Mol Cell Biol. 4:352–361. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Rhead B, Karolchik D, Kuhn RM, et al: The
UCSC Genome Browser database: update 2010. Nucleic Acids Res.
38:D613–D619. 2010. View Article : Google Scholar :
|
20
|
Langmead B: Aligning short sequencing
reads with Bowtie. Curr Protoc Bioinformatics. Chapter 11(Unit
11.7)2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tian P, Sun Y, Li Y, et al: A global
analysis of tandem 3′UTRs in eosinophilic chronic rhinosinusitis
with nasal polyps. PLoS One. 7:e489972012. View Article : Google Scholar
|
22
|
Lee JY, Yeh I, Park JY and Tian B:
PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes. Nucleic
Acids Res. 35:D165–D168. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sun M, Ju H, Zhou Z and Zhu R: Pilot
genome-wide study of tandem 3′UTRs in esophageal cancer using
high-throughput sequencing. Mol Med Rep. 9:1597–1605.
2014.PubMed/NCBI
|
24
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar :
|
25
|
Kimbung S, Biskup E, Johansson I, et al:
Co-targeting of the PI3K pathway improves the response of BRCA1
deficient breast cancer cells to PARP1 inhibition. Cancer Lett.
319:232–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lei H, Hemminki K, Altieri A, et al:
Promoter polymorphisms in matrix metalloproteinases and their
inhibitors: few associations with breast cancer susceptibility and
progression. Breast Cancer Res Treat. 103:61–69. 2007. View Article : Google Scholar
|
27
|
Han X, Zhang H, Jia M, Han G and Jiang W:
Expression of TIMP-3 gene by construction of a eukaryotic cell
expression vector and its role in reduction of metastasis in a
human breast cancer cell line. Cell Mol Immunol. 1:308–310.
2004.
|
28
|
Chen D, Xu W, Bales E, et al: SKI
activates Wnt/beta-catenin signaling in human melanoma. Cancer Res.
63:6626–6634. 2003.PubMed/NCBI
|
29
|
Sánchez-Velar N, Udofia EB, Yu Z and Zapp
ML: hRIP, a cellular cofactor for Rev function, promotes release of
HIV RNAs from the perinuclear region. Genes Dev. 18:23–34. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lévesque K, Halvorsen M, Abrahamyan L, et
al: Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear
ribonucleoprotein A2 expression and impacts on viral assembly.
Traffic. 7:1177–1193. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Varadarajan P, Mahalingam S, Liu P, et al:
The functionally conserved nucleoporins Nup124p from fission yeast
and the human Nup153 mediate nuclear import and activity of the Tf1
retrotransposon and HIV-1 Vpr. Mol Biol Cell. 16:1823–1838. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Radvanyi L, Singh-Sandhu D, Gallichan S,
et al: The gene associated with trichorhinophalangeal syndrome in
humans is overexpressed in breast cancer. Proc Natl Acad Sci USA.
102:11005–11010. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang WJ, Li BH, Yang XZ, et al:
IL-4-induced Stat6 activities affect apoptosis and gene expression
in breast cancer cells. Cytokine. 42:39–47. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
He Q, Zhang SQ, Chu YL, Jia XL and Wang
XL: The correlations between HPV16 infection and expressions of
c-erbB-2 and bcl-2 in breast carcinoma. Mol Biol Rep. 36:807–812.
2009. View Article : Google Scholar
|
35
|
Fernández Y, Gu B, Martínez A, Torregrosa
A and Sierra A: Inhibition of apoptosis in human breast cancer
cells: role in tumor progression to the metastatic state. Int J
Cancer. 101:317–326. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tsutsui S, Yasuda K, Suzuki K, Takeuchi H,
Nishizaki T, Higashi H and Era S: Bcl-2 protein expression is
associated with p27 and p53 protein expressions and MIB-1 counts in
breast cancer. BMC Cancer. 6:1872006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Real PJ, Sierra A, De Juan A, Segovia JC,
Lopez-Vega JM and Fernandez-Luna JL: Resistance to chemotherapy via
Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer
cells. Oncogene. 21:7611–7618. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Neri A, Marrelli D, Roviello F, et al:
Bcl-2 expression correlates with lymphovascular invasion and
long-term prognosis in breast cancer. Breast Cancer Res Treat.
99:77–83. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tokunaga E, Oki E, Kimura Y, et al:
Coexistence of the loss of heterozygosity at the PTEN locus and
HER2 overexpression enhances the Akt activity thus leading to a
negative progesterone receptor expression in breast carcinoma.
Breast Cancer Res Treat. 101:249–257. 2007. View Article : Google Scholar
|
40
|
Palmieri D, Astigiano S, Barbieri O, et
al: Procollagen I COOH-terminal fragment induces VEGF-A and CXCR4
expression in breast carcinoma cells. Exp Cell Res. 314:2289–2298.
2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Holliday DL and Speirs V: Choosing the
right cell line for breast cancer research. Breast Cancer Res.
13:2152011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Perou CM, Sørlie T, Eisen MB, et al:
Molecular portraits of human breast tumours. Nature. 406:747–752.
2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Singh P, Alley TL, Wright SM, et al:
Global changes in processing of mRNA 3′ untranslated regions
characterize clinically distinct cancer subtypes. Cancer Res.
69:9422–9430. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ji Z, Lee JY, Pan Z, Jiang B and Tian B:
Progressive lengthening of 3′ untranslated regions of mRNAs by
alternative polyadenylation during mouse embryonic development.
Proc Natl Acad Sci USA. 106:7028–7033. 2009. View Article : Google Scholar
|
45
|
Daemen A, Griffith OL, Heiser LM, et al:
Modeling precision treatment of breast cancer. Genome Biol.
14:R1102013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Schlange T, Matsuda Y, Lienhard S, Huber A
and Hynes NE: Autocrine WNT signaling contributes to breast cancer
cell proliferation via the canonical WNT pathway and EGFR
transactivation. Breast Cancer Res. 9:R632007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lamb R, Ablett MP, Spence K, Landberg G,
Sims AH and Clarke RB: Wnt Pathway activity in breast cancer
sub-types and stem-like cells. PLoS One. 8:e678112013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lu J, Wen M, Huang Y, et al: C2ORF40
suppresses breast cancer cell proliferation and invasion through
modulating expression of M phase cell cycle genes. Epigenetics.
8:571–583. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sathya S, Sudhagar S, Sarathkumar B and
Lakshmi BS: EGFR inhibition by pentacyclic triterpenes exhibit cell
cycle and growth arrest in breast cancer cells. Life Sci. 95:53–62.
2014. View Article : Google Scholar
|
50
|
Clancy J and McVicar A: Homeostasis 5:
nurses as external agents of control in breast cancer. Br J Nurs.
20:426428–430. 432–437. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang BH, Liu J, Zhou QX, Zuo D and Wang
Y: Analysis of differentially expressed genes in ductal carcinoma
with DNA microarray. Eur Rev Med Pharmacol Sci. 17:758–766.
2013.PubMed/NCBI
|