1
|
Mocarski E, Shenk T and Pass RF:
Cytomegaloviruses. Fields Virology. Knipe DM, Howley PM, Griffin
DE, Lamb RA, Martin MA, Roizman B and Straus SE: 5th edition.
Lippincott-Raven Publishers; Philadelphia, PA: pp. 2702–2772.
2007
|
2
|
Mocarski ES: Cytomegaloviruses and their
replication. Fields virology. Fields BN, Knipe DM and Howley PM: 2.
3rd edition. Lippincott-Raven Publishers; Philadelphia, PA: pp.
2447–2492. 1996
|
3
|
Du G, Dutta N, Lashmit P and Stinski MF:
Alternative splicing of the human cytomegalovirus major
immediate-early genes affects infectious-virus replication and
control of cellular cyclin-dependent kinase. J Virol. 85:804–817.
2011. View Article : Google Scholar :
|
4
|
Griffiths PD, Cope AV, Hassan-Walker AF
and Emery VC: Diagnostic approaches to cytomegalovirus infection in
bone marrow and organ transplantation. Transpl Infect Dis.
1:179–186. 1999. View Article : Google Scholar
|
5
|
Chee MS, Bankier AT, Beck S, et al:
Analysis of the protein-coding content of the sequence of human
cytomegalovirus strain AD169. Curr Top Microbiol Immunol.
154:125–169. 1990.PubMed/NCBI
|
6
|
Davison AJ, Dolan A, Akter P, et al: The
human cytomegalovirus genome revisited: comparison with the
chimpanzee cytomegalovirus genome. J Gen Virol. 84:17–28. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Dolan A, Cunningham C, Hector RD, et al:
Genetic content of wild-type human cytomegalovirus. J Gen Virol.
85:1301–1312. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dunn W, Trang P, Zhong Q, Yang E, van
Belle C and Liu F: Human cytomegalovirus expresses novel microRNAs
during productive viral infection. Cell Microbiol. 7:1684–1695.
2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Murphy E, Rigoutsos I, Shibuya T and Shenk
TE: Reevaluation of human cytomegalovirus coding potential. Proc
Natl Acad Sci USA. 100:13585–13590. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Murphy E, Yu D, Grimwood J, et al: Coding
potential of laboratory and clinical strains of human
cytomegalovirus. Proc Natl Acad Sci USA. 100:14976–14981. 2003.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ma Y, Wang N, Li M, et al: Human CMV
transcripts: an overview. Future Microbiol. 7:577–593. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Maniatis T and Reed R: An extensive
network of coupling among gene expression machines. Nature.
416:499–506. 2002. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Sandri-Goldin RM: Viral regulation of mRNA
export. J Virol. 78:4389–4396. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Awasthi S, Isler JA and Alwine JC:
Analysis of splice variants of the immediate-early 1 region of
human cytomegalovirus. J Virol. 78:8191–8200. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shirakata M, Terauchi M, Ablikim M, et al:
Novel immediate-early protein IE19 of human cytomegalovirus
activates the origin recognition complex I promoter in a
cooperative manner with IE72. J Virol. 76:3158–3167. 2002.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Gatherer D, Seirafian S, Cunningham C, et
al: High-resolution human cytomegalovirus transcriptome. Proc Natl
Acad Sci USA. 108:19755–19760. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bresnahan WA and Shenk T: A subset of
viral transcripts packaged within human cytomegalovirus particles.
Science. 288:2373–2376. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rawlinson WD and Barrell BG: Spliced
transcripts of human cytomegalovirus. J Virol. 67:5502–5513.
1993.PubMed/NCBI
|
19
|
Dai W, Wade B and Thomas S: Human
cytomegalovirus encodes a highly specific RANTES decoy receptor.
Proc Natl Acad Sci USA. 101:16642–16647. 2004. View Article : Google Scholar
|
20
|
Ma YP, Ruan Q, Ji YH, et al: Novel
transcripts of human cytomegalovirus clinical strain found by cDNA
library screening. Genet Mol Res. 10:566–575. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sun Z, Ren G, Ma Y, et al: Transcription
pattern of UL131A-128 mRNA in clinical strains of human
cytomegalovirus. J Biosci. 35:365–370. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Qi Y, Ma Y, He R, et al: Characterization
of 3′ termini of human cytomegalovirus UL138–UL145 transcripts in a
clinical strain. Microbiol Immunol. 55:95–99. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Adam BL, Jervey TY, Kohler CP, et al: The
human cytomegalovirus UL98 gene transcription unit overlaps with
the pp28 true late gene (UL99) and encodes a 58-kilodalton early
protein. J Virol. 69:5304–5310. 1995.PubMed/NCBI
|
24
|
Stenberg RM, Witte PR and Stinski MF:
Multiple spliced and unspliced transcripts from human
cytomegalovirus immediate-early region 2 and evidence for a common
initiation site within immediate-early region 1. J Virol.
56:665–675. 1985.PubMed/NCBI
|
25
|
Terhune SS, Schröer J and Shenk T: RNAs
are packaged into human cytomegalovirus virions in proportion to
their intracellular concentration. J Virol. 78:10390–10398. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Bishop J, Morton J, Rosbach M and
Richardson M: Three abundance classes in HeLa cell messenger RNA.
Nature. 250:199–204. 1974. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Wang SM, Fears SC, Zhang L, Chen JJ and
Rowley JD: Screening polydA/dT)− cDNAs for gene
identification. Proc Natl Acad Sci USA. 97:4162–4167. 2000.
View Article : Google Scholar
|
28
|
Kapranov P, Cawley SE, Drenkow J, et al:
Large-scale transcriptional activity in chromosomes 21 and 22.
Science. 296:916–919. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kerry JA, Sehgal A, Barlow SW, et al:
Isolation and characterization of a low-abundance splice variant
from the human cytomegalovirus major immediate-early gene region. J
Virol. 69:3868–3872. 1995.PubMed/NCBI
|
30
|
Hassan-Walker AF, Cope AV, Griffiths PD
and Emery VC: Transcription of the human cytomegalovirus natural
killer decoy gene, UL18, in vitro and in vivo. J Gen Virol.
79:2113–2116. 1998.PubMed/NCBI
|
31
|
Adair R, Liebisch GW and Colberg-Poley AM:
Complex alternative processing of human cytomegalovirus UL37
pre-mRNA. J Gen Virol. 84:3353–3358. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tenney DJ and Colberg-Poley AM: RNA
analysis and isolation of cDNAs derived from the human
cytomegalovirus immediate-early region at 0.24 map units.
Intervirology. 31:203–214. 1990.PubMed/NCBI
|
33
|
Scalzo AA, Forbes CA, Smith LM and Loh LC:
Transcriptional analysis of human cytomegalovirus and rat
cytomegalovirus homologues of the M73/M73.5 spliced gene family.
Arch Virol. 154:65–75. 2009. View Article : Google Scholar
|
34
|
Kotenko SV, Saccani S, Izotova LS,
Mirochnitchenko OV and Pestka S: Human cytomegalovirus harbors its
own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci USA.
97:1695–1700. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lockridge KM, Zhou SS, Kravitz RH, et al:
Primate cytomegalovirus encode and express an IL-10-like protein.
Virology. 268:272–280. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kondo K, Xu J and Mocarski ES: Human
cytomegalovirus latent gene expression in granulocyte-macrophage
progenitors in culture and in seropositive individuals. Proc Natl
Acad Sci USA. 93:11137–11142. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hutchinson NI, Sondermeyer RT and Tocci
MJ: Organization and expression of the major genes from the long
inverted repeat of the human cytomegalovirus genome. Virology.
155:160–171. 1986. View Article : Google Scholar : PubMed/NCBI
|
38
|
Greenaway PJ and Wilkinson GW: Nucleotide
sequence of the most abundantly transcribed early gene of human
cytomegalovirus strain AD169. Virus Res. 7:17–31. 1987. View Article : Google Scholar : PubMed/NCBI
|
39
|
Demarchi JM: Human cytomegalovirus DNA:
restriction enzyme cleavage maps and map locations for
immediate-early, early, and late RNAs. Virology. 114:23–38. 1981.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Black DL: Mechanisms of alternative
pre-messenger RNA splicing. Annu Rev Biochem. 72:291–336. 2003.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Hastings ML and Krainer AR: Pre-mRNA
splicing in the new millennium. Curr Opin Cell Biol. 13:302–309.
2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schwartz SH, Silva J, Burstein D, Pupko T,
Eyras E and Ast G: Large-scale comparative analysis of splicing
signals and their corresponding splicing factors in eukaryotes.
Genome Res. 18:88–103. 2008. View Article : Google Scholar :
|
43
|
Cartegni L, Chew SL and Krainer AR:
Listening to silence and understanding nonsense: exonic mutations
that affect splicing. Nat Rev Genet. 3:285–298. 2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Reed R and Maniatis T: Intron sequences
involved in lariat formation during pre-mRNA splicing. Cell.
41:95–105. 1985. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ruskin B and Green MR: Role of the 3′
splice site consensus sequence in mammalian pre-mRNA splicing.
Nature. 317:732–734. 1985. View Article : Google Scholar : PubMed/NCBI
|