Composite peptide‑based vaccines for cancer immunotherapy (Review)
- Authors:
- Jie Yang
- Qing Zhang
- Ke Li
- Hong Yin
- Jun‑Nian Zheng
-
Affiliations: Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China - Published online on: November 12, 2014 https://doi.org/10.3892/ijmm.2014.2000
- Pages: 17-23
This article is mentioned in:
Abstract
Yong X, Xiao YF, Luo G, et al: Strategies for enhancing vaccine-induced CTl antitumor immune responses. J Biomed Biotechnol. 2012:6050452012. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Yang JC and Restifo NP: Cancer immunotherapy: moving beyond current vaccines. Nat Med. 10:909–915. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lazoura E and Apostolopoulos V: Rational peptide-based vaccine design for cancer immunotherapeutic applications. Curr Med Chem. 12:629–639. 2005. View Article : Google Scholar : PubMed/NCBI | |
Buhrman JD, Jordan KR, Munson DJ, Moore BL, Kappler JW and Slansky JE: Improving antigenic peptide vaccines for cancer immunotherapy using a dominant tumor-specific T cell receptor. J Biol Chem. 288:33213–33225. 2013. View Article : Google Scholar : PubMed/NCBI | |
Milani A, Sangiolo D, Montemurro F, Aglietta M and Valabrega G: Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol. 24:1740–1748. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Kitamura H, Inoue R, et al: Potential survival benefit of anti-apoptosis protein: survivin-derived peptide vaccine with and without interferon alpha therapy for patients with advanced or recurrent urothelial cancer - results from phase I clinical trials. Clin Dev Immunol. 2013:262967l2013. View Article : Google Scholar | |
Hui EP, Taylor GS, Jia H, et al: Phase I trial of recombinant modified vaccinia ankara encoding epstein-BARR viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 73:1676–1688. 2013. View Article : Google Scholar : PubMed/NCBI | |
Asahara S, Takeda K, Yamao K, Maguchi H and Yamaue H: Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med. 11:2912013. View Article : Google Scholar : PubMed/NCBI | |
Basha G, Lizée G, Reinicke AT, et al: MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells. PLoS One. 3:e32472008. View Article : Google Scholar : PubMed/NCBI | |
Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI | |
Flutter B and Gao B: MHC class I antigen presentation-recently trimmed and well presented. Cell Mol Immunol. 1:22–30. 2004. | |
Neefjes J, Jongsma MLM, Paul P and Bakke O: Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 11:823–836. 2011.PubMed/NCBI | |
Van Kaer L: Major histocompatibility complex class I-restricted antigen processing and presentation. Tissue Antigens. 60:1–9. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vyas JM, Van der Veen AG and Ploegh HL: The known unknowns of antigen processing and presentation. Nat Rev Immunol. 8:607–618. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pieters J: MHC class II-restricted antigen processing and presentation. Adv Immunol. 75:159–208. 2000. View Article : Google Scholar : PubMed/NCBI | |
Callan MF, Fazou C, Yang H, et al: CD8(+) T-cell selection, function, and death in the primary immune response in vivo. J Clin Invest. 106:1251–1261. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vanneman M and Dranoff G: Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 12:237–251. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shashidharamurthy R, Bozeman EN, Patel J, Kaur R, Meganathan J and Selvaraj P: Immunotherapeutic strategies for cancer treatment: a novel protein transfer approach for cancer vaccine development. Med Res Rev. 32:1197–1219. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vesely MD, Kershaw MH, Schreiber RD and Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kennedy R and Celis E: Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 222:129–144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bos R and Sherman LA: CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 70:8368–8377. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dosset M, Godet Y, Vauchy C, et al: Universal cancer peptide-based therapeutic vaccine breaks tolerance against telomerase and eradicates established tumor. Clin Cancer Res. 18:6284–6295. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wei HJ, Wu AT, Hsu CH, et al: The development of a novel cancer immunotherapeutic platform using tumor-targeting mesenchymal stem cells and a protein vaccine. Mol Ther. 19:2249–2257. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liao SJ, Deng DR, Zeng D, et al: HPV16 E5 peptide vaccine in treatment of cervical cancer in vitro and in vivo. J Huazhong Univ Sci Technolog Med Sci. 33:735–742. 2013. View Article : Google Scholar : PubMed/NCBI | |
Palucka K, Banchereau J and Mellman I: Designing vaccines based on biology of human dendritic cell subsets. Immunity. 33:464–478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Walker EB, Miller W, Haley D, Floyd K, Curti B and Urba WJ: Characterization of the class I-restricted gp100 melanoma peptide-stimulated primary immune response in tumor-free vaccine-draining lymph nodes and peripheral blood. Clin Cancer Res. 15:2541–2551. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schwartzentruber DJ, Lawson DH, Richards JM, et al: gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 364:2119–2127. 2011. View Article : Google Scholar : PubMed/NCBI | |
Knuth A, Wölfel T, Klehmann E, Boon T and Meyer zum Buschenfelde KH: Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci USA. 86:2804–2808. 1989. View Article : Google Scholar : PubMed/NCBI | |
Fujie T, Tahara K, Tanaka F, Mori M, Takesako K and Akiyoshi T: A MAGE-1-encoded HLA-A24-binding synthetic peptide induces specific anti-tumor cytotoxic T lymphocytes. Int J Cancer. 80:169–172. 1999. View Article : Google Scholar : PubMed/NCBI | |
Simpson AJ, Caballero OL, Jungbluth A, Chen YT and Old LJ: Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 5:615–625. 2005. View Article : Google Scholar : PubMed/NCBI | |
Karbach J, Gnjatic S, Bender A, et al: Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and montanide ISA-51: association with survival. Int J Cancer. 126:909–918. 2010. | |
Disis ML, Gooley TA, Rinn K, et al: Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol. 20:2624–2632. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sangha R and Butts C: L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res. 13:s4652–s4654. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barratt-Boyes SM, Vlad A and Finn OJ: Immunization of chimpanzees with tumor antigen MUC1 mucin tandem repeat peptide elicits both helper and cytotoxic T-cell responses. Clin Cancer Res. 5:1918–1924. 1999.PubMed/NCBI | |
Bernhardt SL, Gjertsen MK, Trachsel S, et al: Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer. 95:1474–1482. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim NW, Piatyszek MA, Prowse KR, et al: Specific association of human telomerase activity with immortal cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI | |
Brunsvig PF, Aamdal S, Gjertsen MK, et al: Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother. 55:1553–1564. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brunsvig PF, Kyte JA, Kersten C, et al: Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res. 17:6847–6857. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding Z, Ou R, Ni B, Tang J and Xu Y: Cytolytic activity of the human papillomavirus type 16 E711-20 epitope-specific cytotoxic t lymphocyte is enhanced by heat shock protein 110 in HLA-A*0201 transgenic mice. Clin Vaccine Immunol. 20:1027–1033. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang Y, Wang H, et al: Vaccination with the repeat β-hCG C-terminal peptide carried by heat shock protein-65 (HSP65) for inducing antitumor effects. Tumor Biol. 33:1777–1784. 2012. View Article : Google Scholar | |
Koido S, Homma S, Okamoto M, et al: Combined TLR2/4-activated dendritic/tumor cell fusions induce augmented cytotoxic T lymphocytes. PLoS One. 8:e592802013. View Article : Google Scholar : PubMed/NCBI | |
Muraoka D, Kato T, Wang L, et al: Peptide vaccine induces enhanced tumor growth associated with apoptosis induction in CD8+ T cells. J Immunol. 185:3768–3776. 2010. View Article : Google Scholar : PubMed/NCBI | |
Speiser DE, Liénard D, Rufer N, et al: Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest. 115:739–746. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cho BK, Palliser D, Guillen E, et al: A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity. 12:263–272. 2000. View Article : Google Scholar | |
Khan S, Bijker MS, Weterings JJ, et al: Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J Biol Chem. 282:21145–21159. 2007. View Article : Google Scholar : PubMed/NCBI | |
Weber J, Sondak VK, Scotland R, et al: Granulocyte- macrophage-colony-stimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer. 97:186–200. 2003. View Article : Google Scholar | |
Hamid O, Solomon JC, Scotland R, et al: Alum with interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin Cancer Res. 13:215–222. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee P, Wang F, Kuniyoshi J, et al: Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol. 19:3836–3847. 2001.PubMed/NCBI | |
Izumoto S: Peptide vaccine. Adv Exp Med Biol. 746:166–177. 2012. View Article : Google Scholar : PubMed/NCBI | |
May RJ, Dao T, Pinilla-Ibarz J, et al: Peptide epitopes from the wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res. 13:4547–4555. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fujiki F, Oka Y, Tsuboi A, et al: Identification and characterization of a WT1 (Wilms Tumor Gene) protein-derived HLA-DRB1*0405-restricted 16-mer helper peptide that promotes the induction and activation of WT1-specific cytotoxic T lymphocytes. J Immunother. 30:282–293. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ and Rao A: Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity. 32:79–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi Y, Lu B, Gerard C and Iwasaki A: CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature. 462:510–513. 2009. View Article : Google Scholar : PubMed/NCBI | |
Williams MA, Tyznik AJ and Bevan MJ: Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature. 441:890–893. 2006. View Article : Google Scholar : PubMed/NCBI | |
Knutson KL, Schiffman K and Disis ML: Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest. 107:477–484. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gritzapis AD, Voutsas IF, Lekka E, Papamichail M and Baxevanis CN: Peptide vaccination breaks tolerance to HER-2/neu by generating vaccine-specific FasL(+) CD4(+) T cells: first evidence for intratumor apoptotic regulatory T cells. Cancer Res. 70:2686–2696. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang XY, Subjeck JR, Shrikant PA and Kim HL: Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br J Cancer. 104:643–652. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arens R, van Hall T, van der Burg SH, Ossendorp F and Melief CJM: Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol. 25:182–190. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gray JC, French RR, James S, Al-Shamkhani A, Johnson PW and Glennie MJ: Optimising anti-tumour CD8 T-cell responses using combinations of immunomodulatory antibodies. Eur J Immunol. 38:2499–2511. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fransen MF, Sluijter M, Morreau H, Arens R and Melief CJ: Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res. 17:2270–2280. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ascierto PA, Simeone E, Sznol M, Fu YX and Melero I: Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol. 37:508–516. 2010. View Article : Google Scholar : PubMed/NCBI | |
Croft M: The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 9:271–285. 2009. View Article : Google Scholar : PubMed/NCBI | |
Croft M: Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol. 3:609–620. 2003. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Weiner GJ and Pardoll DM: Cancer immunotherapy comes of age. J Clin Oncol. 29:4828–4836. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sin JI, Kim H, Ahn E, et al: Combined stimulation of TLR9 and 4.1BB augments Trp2 peptide vaccine-mediated melanoma rejection by increasing Ag-specific CTl activity and infiltration into tumor sites. Cancer Lett. 330:190–199. 2013. View Article : Google Scholar | |
Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI | |
Apostolopoulos V: Peptide-based vaccines for cancer: are we choosing the right peptides? Expert Rev Vaccines. 8:259–260. 2009. View Article : Google Scholar : PubMed/NCBI | |
Disis ML, Smith JW, Murphy AE, Chen W and Cheever MA: In vitro generation of human cytolytic T-cells specific for peptides derived from the HER-2/neu protooncogene protein. Cancer Res. 54:1071–1076. 1994.PubMed/NCBI | |
Robbins PF, El-Gamil M, Li YF, et al: A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med. 183:1185–1192. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wölfel T, Hauer M, Schneider J, et al: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 269:1281–1284. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kawakami Y, Wang X, Shofuda T, et al: Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J Immunol. 166:2871–2877. 2001. View Article : Google Scholar : PubMed/NCBI | |
Coulie PG, Lehmann F, Lethé B, et al: A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA. 92:7976–7980. 1995. View Article : Google Scholar : PubMed/NCBI | |
Baurain JF, Colau D, van Baren N, et al: High frequency of autologous anti-melanoma CTL directed against an antigen generated by a point mutation in a new helicase gene. J Immunol. 164:6057–6066. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gaudin C, Kremer F, Angevin E, Scott V and Triebel F: A hsp70-2 mutation recognized by CTl on a human renal cell carcinoma. J Immunol. 162:1730–1738. 1999.PubMed/NCBI | |
Mandruzzato S, Brasseur F, Andry G, Boon T and van der Bruggen P: A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med. 186:785–793. 1997. View Article : Google Scholar : PubMed/NCBI | |
Bristol JA, Schlom J and Abrams SI: Development of a murine mutant ras CD8+ CTL peptide epitope variant that possesses enhanced MHC class I binding and immunogenic properties. J Immunol. 160:2433–2441. 1998.PubMed/NCBI | |
Couch ME, Ferris RL, Brennan JA, et al: Alteration of cellular and humoral immunity by mutant p53 protein and processed mutant peptide in head and neck cancer. Clin Cancer Res. 13:7199–7206. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pieper R, Christian RE, Gonzales MI, et al: Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells. J Exp Med. 189:757–766. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang RF, Wang X, Atwood AC, Topalian SL and Rosenberg SA: Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science. 284:1351–1354. 1999. View Article : Google Scholar : PubMed/NCBI |