1
|
Steegers EA, von Dadelszen P, Duvekot JJ
and Pijnenborg R: Pre-eclampsia. Lancet. 376:631–644. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Trogstad L, Magnus P and Stoltenberg C:
Pre-eclampsia: Risk factors and causal models. Best Pract Res Clin
Obstet Gynaecol. 25:329–342. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Genbacev O, DiFederico E, McMaster M and
Fisher SJ: Invasive cytotrophoblast apoptosis in pre-eclampsia. Hum
Reprod. 14(Suppl 2): S59–S66. 1999. View Article : Google Scholar
|
4
|
Roberts JM and Escudero C: The placenta in
preeclampsia. Pregnancy Hypertens. 2:72–83. 2012.PubMed/NCBI
|
5
|
Kajantie E, Thornburg KL, Eriksson JG,
Osmond C and Barker DJ: In preeclampsia, the placenta grows slowly
along its minor axis. Int J Dev Biol. 54:469–473. 2010. View Article : Google Scholar
|
6
|
Roberts DJ and Post MD: The placenta in
pre-eclampsia and intrauterine growth restriction. J Clin Pathol.
61:1254–1260. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ma RQ, Sun MN and Yang Z: Effects of
preeclampsia-like symptoms at early gestational stage on
feto-placental outcomes in a mouse model. Chin Med J (Engl).
123:707–712. 2010.
|
8
|
Roberts JM: Endothelial dysfunction in
preeclampsia. Semin Reprod Endocrinol. 16:5–15. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mustafa R, Ahmed S, Gupta A and Venuto RC:
A comprehensive review of hypertension in pregnancy. J Pregnancy.
2012:1059182012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Escudero C, Roberts JM, Myatt L and
Feoktistov I: Impaired adenosine-mediated angiogenesis in
preeclampsia: potential implications for fetal programming. Front
Pharmacol. 5:1342014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sibai BM: Maternal and uteroplacental
hemodynamics for the classification and prediction of preeclampsia.
Hypertension. 52:805–806. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Duckitt K and Harrington D: Risk factors
for pre-eclampsia at antenatal booking: systematic review of
controlled studies. BMJ. 330:5652005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wallukat G, Homuth V, Fischer T, Lindschau
C, Horstkamp B, Jüpner A, Baur E, Nissen E, Vetter K, Neichel D,
Dudenhausen JW, Haller H and Luft FC: Patients with preeclampsia
develop agonistic autoantibodies against the angiotensin AT1
receptor. J Clin Invest. 103:945–952. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou CC, Ahmad S, Mi T, Abbasi S, Xia L,
Day MC, Ramin SM, Ahmed A, Kellems RE and Xia Y: Autoantibody from
women with preeclampsia induces soluble Fms-like tyrosine kinase-1
production via angiotensin type 1 receptor and calcineurin/nuclear
factor of activated T-cells signaling. Hypertension. 51:1010–1019.
2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ferrero-Miliani L, Nielsen OH, Andersen PS
and Girardin SE: Chronic inflammation: importance of NOD2 and NALP3
in interleukin-1beta generation. Clin Exp Immunol. 147:227–235.
2007.PubMed/NCBI
|
16
|
Levine RJ, Maynard SE, Qian C, Lim KH,
England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein
FH, Sibai BM, Sukhatme VP and Karumanchi SA: Circulating angiogenic
factors and the risk of preeclampsia. N Engl J Med. 350:672–683.
2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Major HD, Campbell RA, Silver RM, Branch
DW and Weyrich AS: Synthesis of sFlt-1 by platelet-monocyte
aggregates contributes to the pathogenesis of preeclampsia. Am J
Obstet Gynecol. 210:547.e541–e547. 2014. View Article : Google Scholar
|
18
|
Wang W, Parchim NF, Iriyama T, Luo R, Zhao
C, Liu C, Irani RA, Zhang W, Ning C, Zhang Y, Blackwell SC, Chen L,
Tao L, Hicks MJ, Kellems RE and Xia Y: Excess LIGHT contributes to
placental impairment, increased secretion of vasoactive factors,
hypertension, and proteinuria in preeclampsia. Hypertension.
63:595–606. 2014. View Article : Google Scholar
|
19
|
Ehrig JC, Horvat D, Allen SR, Jones RO,
Kuehl TJ and Uddin MN: Cardiotonic steroids induce anti-angiogenic
and anti-proliferative profiles in first trimester extravillous
cytotrophoblast cells. Placenta. 35:932–936. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Weed S, Bastek JA, Anton L, Elovitz MA,
Parry S and Srinivas SK: Examining the correlation between
placental and serum placenta growth factor in preeclampsia. Am J
Obstet Gynecol. 207:140.e141–e146. 2012. View Article : Google Scholar
|
21
|
Bills VL, Varet J, Millar A, Harper SJ,
Soothill PW and Bates DO: Failure to up-regulate VEGF165b in
maternal plasma is a first trimester predictive marker for
pre-eclampsia. Clin Sci (Lond). 116:265–272. 2009. View Article : Google Scholar
|
22
|
Zhai YL, Zhu L, Shi SF, Liu LJ, Lv JC and
Zhang H: Elevated soluble VEGF receptor sFlt-1 correlates with
endothelial injury in IgA nephropathy. PLoS One. 9:e1017792014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Haram K, Mortensen JH and Nagy B: Genetic
aspects of preeclampsia and the HELLP syndrome. J Pregnancy.
2014:9107512014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lehnen H, Mosblech N, Reineke T, Puchooa
A, Menke-Möllers I, Zechner U and Gembruch U: Prenatal clinical
assessment of sFlt-1 (soluble fms-like tyrosine kinase-1)/PlGF
(placental growth factor) ratio as a diagnostic tool for
preeclampsia, pregnancy-induced hypertension, and proteinuria.
Geburtshilfe Frauenheilkd. 73:440–445. 2013. View Article : Google Scholar
|
25
|
Sitras V, Paulssen RH, Gronaas H, Leirvik
J, Hanssen TA, Vartun A and Acharya G: Differential placental gene
expression in severe preeclampsia. Placenta. 30:424–433. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Reimer T, Koczan D, Gerber B, Richter D,
Thiesen HJ and Friese K: Microarray analysis of differentially
expressed genes in placental tissue of pre-eclampsia: up-regulation
of obesity-related genes. Mol Hum Reprod. 8:674–680. 2002.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Ma K, Lian Y, Zhou S, Hu R, Xiong Y, Ting
P, Xiong Y, Li X and Wang X: Microarray analysis of differentially
expressed genes in preeclamptic and normal placental tissues. Clin
Exp Obstet Gynecol. 41:261–271. 2014.PubMed/NCBI
|
28
|
Kleinrouweler CE, van Uitert M, Moerland
PD, Ris-Stalpers C, van der Post JA and Afink GB: Differentially
expressed genes in the pre-eclamptic placenta: a systematic review
and meta-analysis. PLoS One. 8:e689912013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Roberts JM and Hubel CA: Oxidative stress
in preeclampsia. Am J Obstet Gynecol. 190:1177–1178. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Bilodeau JF: Review: maternal and
placental antioxidant response to preeclampsia - impact on
vasoactive eicosanoids. Placenta. 35(Suppl): S32–S38. 2014.
View Article : Google Scholar
|
31
|
Lo YM, Corbetta N, Chamberlain PF, Rai V,
Sargent IL, Redman CW and Wainscoat JS: Presence of fetal DNA in
maternal plasma and serum. Lancet. 350:485–487. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lo YM: Fetal DNA in maternal plasma. Ann
NY Acad Sci. 906:141–147. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhong XY, Laivuori H, Livingston JC,
Ylikorkala O, Sibai BM, Holzgreve W and Hahn S: Elevation of both
maternal and fetal extracellular circulating deoxyribonucleic acid
concentrations in the plasma of pregnant women with preeclampsia.
Am J Obstet Gynecol. 184:414–419. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hahn S, Rusterholz C, Hösli I and Lapaire
O: Cell-free nucleic acids as potential markers for preeclampsia.
Placenta. 32(Suppl): S17–S20. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Vlková B, Szemes T, Minarik G, Turna J and
Celec P: Circulating free fetal nucleic acids in maternal plasma
and preeclampsia. Med Hypotheses. 74:1030–1032. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yu H, Shen Y, Ge Q, He Y, Qiao D, Ren M
and Zhang J: Quantification of maternal serum cell-free fetal DNA
in early-onset preeclampsia. Int J Mol Sci. 14:7571–7582. 2013.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Chiu RW and Lo YM: Clinical applications
of maternal plasma fetal DNA analysis: translating the fruits of 15
years of research. Clin Chem Lab Med. 51:197–204. 2013.
|
38
|
Grill S, Rusterholz C, Zanetti-Dällenbach
R, Tercanli S, Holzgreve W, Hahn S and Lapaire O: Potential markers
of preeclampsia - a review. Reprod Biol Endocrinol. 7:702009.
View Article : Google Scholar
|
39
|
Kim MJ, Kim SY, Park SY, Ahn HK, Chung JH
and Ryu HM: Association of fetal-derived hypermethylated RASSF1A
concentration in placenta-mediated pregnancy complications.
Placenta. 34:57–61. 2013. View Article : Google Scholar
|
40
|
Koukoura O, Sifakis S and Spandidos DA:
DNA methylation in the human placenta and fetal growth (review).
Mol Med Rep. 5:883–889. 2012.PubMed/NCBI
|
41
|
Vora NL, Johnson KL, Lambert-Messerlian G,
Tighiouart H, Peter I, Urato AC and Bianchi DW: Relationships
between cell-free DNA and serum analytes in the first and second
trimesters of pregnancy. Obstet Gynecol. 116:673–678. 2010.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Lo YM, Zhang J, Leung TN, Lau TK, Chang AM
and Hjelm NM: Rapid clearance of fetal DNA from maternal plasma. Am
J Hum Genet. 64:218–224. 1999. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Scharfe-Nugent A, Corr SC, Carpenter SB,
Keogh L, Doyle B, Martin C, Fitzgerald KA, Daly S, O’Leary JJ and
O’Neill LA: TLR9 provokes inflammation in response to fetal DNA:
mechanism for fetal loss in preterm birth and preeclampsia. J
Immunol. 188:5706–5712. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tost J: DNA methylation: an introduction
to the biology and the disease-associated changes of a promising
biomarker. Mol Biotechnol. 44:71–81. 2010. View Article : Google Scholar
|
45
|
Colleoni F, Lattuada D, Garretto A,
Massari M, Mandò C, Somigliana E and Cetin I: Maternal blood
mitochondrial DNA content during normal and intrauterine growth
restricted (IUGR) pregnancy. Am J Obstet Gynecol.
203:365.e361–e366. 2010. View Article : Google Scholar
|
46
|
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal
T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating
mitochondrial DAMPs cause inflammatory responses to injury. Nature.
464:104–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Goulopoulou S, Matsumoto T, Bomfim GF and
Webb RC: Toll-like receptor 9 activation: a novel mechanism linking
placenta-derived mitochondrial DNA and vascular dysfunction in
pre-eclampsia. Clin Sci (Lond). 123:429–435. 2012. View Article : Google Scholar
|
48
|
Levy MM, Fink MP, Marshall JC, Abraham E,
Angus D, Cook D, Cohen J, Opal SM, Vincent JL and Ramsay G: 2001
SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions
Conference. Crit Care Med. 31:1250–1256. 2003. View Article : Google Scholar : PubMed/NCBI
|
49
|
Garrabou G, Morén C, López S, Tobías E,
Cardellach F, Miró O and Casademont J: The effects of sepsis on
mitochondria. J Infect Dis. 205:392–400. 2012. View Article : Google Scholar
|
50
|
Jiménez-Sousa MA, Tamayo E,
Guzmán-Fulgencio M, Heredia M, Fernández-Rodríguez A, Gómez E,
Almansa R, Gómez-Herreras JI, García-Álvarez M, Gutiérrez-Junco S,
Bermejo-Martin JF and Resino S; the Spanish Sepsis Group (SpSG):
Mitochondrial DNA haplogroups are associated with severe sepsis and
mortality in patients who underwent major surgery. J Infect. Jul
17–2014.Epub ahead of print. View Article : Google Scholar
|
51
|
Tantini B, Flamigni F, Pignatti C,
Stefanelli C, Fattori M, Facchini A, Giordano E, Clô C and
Caldarera CM: Polyamines, NO and cGMP mediate stimulation of DNA
synthesis by tumor necrosis factor and lipopolysaccharide in chick
embryo cardiomyocytes. Cardiovasc Res. 49:408–416. 2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sandrim VC, Palei AC, Sertório JT, Amaral
LM, Cavalli RC and Tanus-Santos JE: Alterations in cyclic GMP
levels in preeclampsia may reflect increased B-type natriuretic
peptide levels and not impaired nitric oxide activity. Clin
Biochem. 44:1012–1014. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Okuno S, Hamada H, Yasuoka M, Watanabe H,
Fujiki Y, Yamada N, Sohda S and Kubo T: Brain natriuretic peptide
(BNP) and cyclic guanosine monophosphate (cGMP) levels in normal
pregnancy and preeclampsia. J Obstet Gynaecol Res. 25:407–410.
1999. View Article : Google Scholar
|
54
|
Wu J, Sun L, Chen X, Du F, Shi H, Chen C
and Chen ZJ: Cyclic GMP-AMP is an endogenous second messenger in
innate immune signaling by cytosolic DNA. Science. 339:826–830.
2013. View Article : Google Scholar
|
55
|
Ablasser A, Goldeck M, Cavlar T, Deimling
T, Witte G, Röhl I, Hopfner KP, Ludwig J and Hornung V: cGAS
produces a 2′-5′-linked cyclic dinucleotide second messenger that
activates STING. Nature. 498:380–384. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yuen RK, Peñaherrera MS, von Dadelszen P,
McFadden DE and Robinson WP: DNA methylation profiling of human
placentas reveals promoter hypomethylation of multiple genes in
early-onset preeclampsia. Eur J Hum Genet. 18:1006–1012. 2010.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Essien EE and Afamefuna GC: Chloroquine
and its metabolites in human cord blood, neonatal blood, and urine
after maternal medication. Clin Chem. 28:1148–1152. 1982.PubMed/NCBI
|
58
|
Koide K, Sekizawa A, Iwasaki M, Matsuoka
R, Honma S, Farina A, Saito H and Okai T: Fragmentation of
cell-free fetal DNA in plasma and urine of pregnant women. Prenat
Diagn. 25:604–607. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Evans MI and Kilpatrick M: Noninvasive
prenatal diagnosis: 2010. Clin Lab Med. 30:655–665. 2010.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Kassie GM, Negussie D and Ahmed JH:
Maternal outcomes of magnesium sulphate and diazepam use in women
with severe pre-eclampsia and eclampsia in Ethiopia. Pharm Pract
(Granada). 12:4002014.
|
61
|
Tannirandorn Y: Is magnesium sulfate for
prevention or only therapeutic in preeclampsia? J Med Assoc Thai.
88:1003–1010. 2005.PubMed/NCBI
|
62
|
von Dadelszen P and Magee LA:
Pre-eclampsia:an update. Curr Hypertens Rep. 16:4542014. View Article : Google Scholar
|