1
|
Massague J: TGFβ signalling in context.
Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar
|
2
|
Massague J, Seoane J and Wotton D: Smad
transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Davis-Dusenbery BN and Hata A:
Smad-mediated miRNA processing: a critical role for a conserved RNA
sequence. RNA Biol. 8:71–76. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rodriguez A, Griffiths-Jones S, Ashurst JL
and Bradley A: Identification of mammalian microRNA host genes and
transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Borchert GM, Lanier W and Davidson BL: RNA
polymerase III transcribes human microRNAs. Nat Struct Mol Biol.
13:1097–1101. 2006. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Han J, Lee Y, Yeom KH, et al: Molecular
basis for the recognition of primary microRNAs by the Drosha-DGCR8
complex. Cell. 125:887–901. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bernstein E, Caudy AA, Hammond SM and
Hannon GJ: Role for a bidentate ribonuclease in the initiation step
of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hutvagner G, McLachlan J, Pasquinelli AE,
Balint E, Tuschl T and Zamore PD: A cellular function for the
RNA-interference enzyme Dicer in the maturation of the let-7 small
temporal RNA. Science. 293:834–838. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Carrington JC and Ambros V: Role of
microRNAs in plant and animal development. Science. 301:336–338.
2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
ten Dijke P and Arthur HM: Extracellular
control of TGFβ signalling in vascular development and disease. Nat
Rev Mol Cell Biol. 8:857–869. 2007. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Drake KM, Dunmore BJ, McNelly LN, Morrell
NW and Aldred MA: Correction of nonsense BMPR2 and SMAD9 mutations
by ataluren in pulmonary arterial hypertension. Am J Respir Cell
Mol Biol. 49:403–409. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lagna G, Ku MM, Nguyen PH, Neuman NA,
Davis BN and Hata A: Control of phenotypic plasticity of smooth
muscle cells by bone morphogenetic protein signaling through the
myocardin-related transcription factors. J Biol Chem.
282:37244–37255. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Owens GK, Kumar MS and Wamhoff BR:
Molecular regulation of vascular smooth muscle cell differentiation
in development and disease. Physiol Rev. 84:767–801. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Davis BN, Hilyard AC, Lagna G and Hata A:
SMAD proteins control DROSHA-mediated microRNA maturation. Nature.
454:56–61. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kang H, Davis-Dusenbery BN, Nguyen PH, et
al: Bone morpho-genetic protein 4 promotes vascular smooth muscle
contractility by activating microRNA-21 (miR-21), which
down-regulates expression of family of dedicator of cytokinesis
(DOCK) proteins. J Biol Chem. 287:3976–3986. 2012. View Article : Google Scholar :
|
17
|
Davis BN, Hilyard AC, Nguyen PH, Lagna G
and Hata A: Smad proteins bind a conserved RNA sequence to promote
microRNA maturation by Drosha. Mol Cell. 39:373–384. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim S, Hata A and Kang H: Down-regulation
of miR-96 by bone morphogenetic protein signaling is critical for
vascular smooth muscle cell phenotype modulation. J Cell Biochem.
115:889–895. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chan MC, Hilyard AC, Wu C, et al:
Molecular basis for antagonism between PDGF and the TGFβ family of
signalling pathways by control of miR-24 expression. EMBO J.
29:559–573. 2010. View Article : Google Scholar :
|
20
|
Kang H, Louie J, Weisman A, et al:
Inhibition of microRNA-302 (miR-302) by bone morphogenetic protein
4 (BMP4) facilitates the BMP signaling pathway. J Biol Chem.
287:38656–38664. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xin M, Small EM, Sutherland LB, et al:
MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and
responsiveness of smooth muscle cells to injury. Genes Dev.
23:2166–2178. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Davis-Dusenbery BN, Chan MC, Reno KE, et
al: down-regulation of Kruppel-like factor-4 (KLF4) by
microRNA-143/145 is critical for modulation of vascular smooth
muscle cell phenotype by transforming growth factor-beta and bone
morphogenetic protein 4. J Biol Chem. 286:28097–28110. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Balderman JA, Lee HY, Mahoney CE, et al:
Bone morphogenetic protein-2 decreases microRNA-30b and
microRNA-30c to promote vascular smooth muscle cell calcification.
J Am Heart Assoc. 1:e0039052012. View Article : Google Scholar
|
24
|
Lin GL and Hankenson KD: Integration of
BMP, Wnt, and notch signaling pathways in osteoblast
differentiation. J Cell Biochem. 112:3491–3501. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bandyopadhyay A, Tsuji K, Cox K, Harfe BD,
Rosen V and Tabin CJ: Genetic analysis of the roles of BMP2, BMP4,
and BMP7 in limb patterning and skeletogenesis. PLoS Genet.
2:e2162006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Vimalraj S and Selvamurugan N: MicroRNAs:
synthesis, gene regulation and osteoblast differentiation. Curr
Issues Mol Biol. 15:7–18. 2012.PubMed/NCBI
|
27
|
Li Z, Hassan MQ, Volinia S, et al: A
microRNA signature for a BMP2-induced osteoblast lineage commitment
program. Proc Natl Acad Sci USA. 105:13906–13911. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee KS, Kim HJ, Li QL, et al: Runx2 is a
common target of transforming growth factor β1 and bone
morphogenetic protein 2, and cooperation between Runx2 and Smad5
induces osteoblast-specific gene expression in the pluripotent
mesenchymal precursor cell line C2C12. Mol Cell Biol. 20:8783–8792.
2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Itoh T, Nozawa Y and Akao Y: MicroRNA-141
and -200a are involved in bone morphogenetic protein-2-induced
mouse pre-osteoblast differentiation by targeting distal-less
homeobox 5. J Biol Chem. 284:19272–19279. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ulsamer A, Ortuno MJ, Ruiz S, et al: BMP-2
induces Osterix expression through up-regulation of Dlx5 and its
phosphorylation by p38. J Biol Chem. 283:3816–3826. 2008.
View Article : Google Scholar
|
31
|
Itoh T, Takeda S and Akao Y: MicroRNA-208
modulates BMP-2-stimulated mouse preosteoblast differentiation by
directly targeting V-ets erythroblastosis virus E26 oncogene
homolog 1. J Biol Chem. 285:27745–27752. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Itoh T, Ando M, Tsukamasa Y and Akao Y:
Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse
pre-osteoblast differentiation is regulated by microRNA-370. FEBS
Lett. 586:1693–1701. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Raouf A and Seth A: Ets transcription
factors and targets in osteogenesis. Oncogene. 19:6455–6463. 2000.
View Article : Google Scholar
|
34
|
Zhang JF, Fu WM, He ML, et al: MiRNA-20a
promotes osteogenic differentiation of human mesenchymal stem cells
by co-regulating BMP signaling. RNA Biol. 8:829–838. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Gazzerro E and Canalis E: Bone
morphogenetic proteins and their antagonists. Rev Endocr Metab
Disord. 7:51–65. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Goda S, Inoue H, Kaneshita Y, et al:
Emdogain stimulates matrix degradation by osteoblasts. J Dent Res.
87:782–787. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu T, Zhou H, Hong Y, Li J, Jiang X and
Huang H: miR-30 family members negatively regulate osteoblast
differentiation. J Biol Chem. 287:7503–7511. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dobreva G, Chahrour M, Dautzenberg M, et
al: SATB2 is a multifunctional determinant of craniofacial
patterning and osteoblast differentiation. Cell. 125:971–986. 2006.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Gong Y, Xu F, Zhang L, et al: MicroRNA
expression signature for Satb2-induced osteogenic differentiation
in bone marrow stromal cells. Mol Cell Biochem. 387:227–239. 2013.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Gamez B, Rodriguez-Carballo E, Bartrons R,
Rosa JL and Ventura F: MicroRNA-322 (miR-322) and its target
protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem.
288:14264–14275. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yoshida Y, Tanaka S, Umemori H, et al:
Negative regulation of BMP/Smad signaling by Tob in osteoblasts.
Cell. 103:1085–1097. 2000. View Article : Google Scholar
|
42
|
Mizuno Y, Tokuzawa Y, Ninomiya Y, et al:
miR-210 promotes osteoblastic differentiation through inhibition of
AcvR1b. FEBS Lett. 583:2263–2268. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Miyazono K, Maeda S and Imamura T: BMP
receptor signaling: transcriptional targets, regulation of signals,
and signaling crosstalk. Cytokine Growth Factor Rev. 16:251–263.
2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Maeda S, Hayashi M, Komiya S, Imamura T
and Miyazono K: Endogenous TGF-β signaling suppresses maturation of
osteo-blastic mesenchymal cells. EMBO J. 23:552–563. 2004.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Hegarty SV, O’Keeffe GW and Sullivan AM:
BMP-Smad 1/5/8 signalling in the development of the nervous system.
Prog Neurobiol. 109:28–41. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
De Pietri Tonelli D, Pulvers JN, Haffner
C, Murchison EP, Hannon GJ and Huttner WB: miRNAs are essential for
survival and differentiation of newborn neurons but not for
expansion of neural progenitors during early neurogenesis in the
mouse embryonic neocortex. Development. 135:3911–3921. 2008.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Smirnova L, Grafe A, Seiler A, Schumacher
S, Nitsch R and Wulczyn FG: Regulation of miRNA expression during
neural cell specification. Eur J Neurosci. 21:1469–1477. 2005.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Mao S, Li H, Sun Q, Zen K, Zhang CY and Li
L: miR-17 regulates the proliferation and differentiation of the
neural precursor cells during mouse corticogenesis. FEBS J. Dec
9–2013.(Epub ahead of print). PubMed/NCBI
|
49
|
Sun Q, Mao S, Li H, Zen K, Zhang CY and Li
L: Role of miR-17 family in the negative feedback loop of bone
morphogenetic protein signaling in neuron. PLoS One. 8:e830672013.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Rios I, Alvarez-Rodriguez R, Marti E and
Pons S: Bmp2 antagonizes sonic hedgehog-mediated proliferation of
cerebellar granule neurones through Smad5 signalling. Development.
131:3159–3168. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Berenguer J, Herrera A, Vuolo L, et al:
MicroRNA 22 regulates cell cycle length in cerebellar granular
neuron precursors. Mol Cell Biol. 33:2706–2717. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Gaughwin P, Ciesla M, Yang H, Lim B and
Brundin P: Stage-specific modulation of cortical neuronal
development by Mmu-miR-134. Cereb Cortex. 21:1857–1869. 2011.
View Article : Google Scholar : PubMed/NCBI
|