1
|
Nattel S and Opie LH: Controversies in
atrial fibrillation. Lancet. 367:262–272. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Velagapudi P, Turagam MK, Leal MA and
Kocheril AG: Atrial fibrosis: a risk stratifier for atrial
fibrillation. Expert Rev Cardiovasc Ther. 11:155–160. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Garg A and Akoum N: Atrial fibrillation
and heart failure: beyond the heart rate. Curr Opin Cardiol.
28:332–336. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jalife J: Mechanisms of persistent atrial
fibrillation. Curr Opin Cardiol. 29:20–27. 2014. View Article : Google Scholar
|
5
|
Yue L, Xie J and Nattel S: Molecular
determinants of cardiac fibroblast electrical function and
therapeutic implications for atrial fibrillation. Cardiovasc Res.
89:744–753. 2011. View Article : Google Scholar :
|
6
|
Lee KW, Everett TH, Rahmutula D, et al:
Pirfenidone prevents the development of a vulnerable substrate for
atrial fibrillation in a canine model of heart failure.
Circulation. 114:1703–1712. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Petrov VV, van Pelt JF, Vermeesch JR, et
al: TGF-beta1-induced cardiac myofibroblasts are nonproliferating
functional cells carrying DNA damages. Exp Cell Res. 314:1480–1494.
2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shi Y and Massague J: Mechanisms of
TGF-beta signaling from cell membrane to the nucleus. Cell.
113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schmierer B and Hill CS: TGFbeta-SMAD
signal transduction: molecular specificity and functional
flexibility. Nat Rev Mol Cell Biol. 8:970–982. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen P, Wu R, Zhu W, et al: Hypoxia
preconditioned mesenchymal stem cells prevent cardiac fibroblast
activation and collagen production via leptin. PLoS One.
9:e1035872014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Leask A: Potential therapeutic targets for
cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF,
partners in fibroblast activation. Circ Res. 106:1675–1680. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Peng H, Carretero OA, Peterson EL and
Rhaleb NE: Ac-SDKP inhibits transforming growth
factor-beta1-induced differentiation of human cardiac fibroblasts
into myofibroblasts. Am J Physiol Heart Circ Physiol.
298:H1357–H1364. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lee MK, Pardoux C, Hall MC, et al:
TGF-beta activates Erk MAP kinase signalling through direct
phosphorylation of ShcA. EMBO J. 26:3957–3967. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gao S, Liu Z, Li H, Little PJ, Liu P and
Xu S: Cardiovascular actions and therapeutic potential of
tanshinone IIA. Atherosclerosis. 220:3–10. 2012. View Article : Google Scholar
|
15
|
Yang R, Liu A, Ma X, Li L, Su D and Liu J:
Sodium tanshinone IIA sulfonate protects cardiomyocytes against
oxidative stress-mediated apoptosis through inhibiting JNK
activation. J Cardiovasc Pharmacol. 51:396–401. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang FL, Leo S, Wang XG, et al: Effect of
tanshinone IIA on cardiomyocyte hypertrophy and apoptosis in
spontaneously hypertensive rats. Exp Ther Med. 6:1517–1521.
2013.PubMed/NCBI
|
17
|
Xu S and Liu P: Tanshinone II-A: new
perspectives for old remedies. Expert Opin Ther Pat. 23:149–153.
2013. View Article : Google Scholar
|
18
|
Yang L, Zou XJ, Gao X, et al: Sodium
tanshinone IIA sulfonate attenuates angiotensin II-induced collagen
type I expression in cardiac fibroblasts in vitro. Exp Mol Med.
41:508–516. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang P, Zhou S, Xu L, et al: Hydrogen
peroxide-mediated oxidative stress and collagen synthesis in
cardiac fibroblasts: blockade by tanshinone IIA. J Ethnopharmacol.
145:152–161. 2013. View Article : Google Scholar
|
20
|
Tsai CT, Lai LP, Kuo KT, et al:
Angiotensin II activates signal transducer and activators of
transcription 3 via Rac1 in atrial myocytes and fibroblasts:
implication for the therapeutic effect of statin in atrial
structural remodeling. Circulation. 117:344–355. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Peng H, Carretero OA, Raij L, Yang F,
Kapke A and Rhaleb NE: Antifibrotic effects of
N-acetyl-seryl-aspartyl-Lysyl-proline on the heart and kidney in
aldosterone-salt hypertensive rats. Hypertension. 37:794–800. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang H, Pi R, Li R, et al: PPARbeta/delta
activation inhibits angiotensin II-induced collagen type I
expression in rat cardiac fibroblasts. Arch Biochem Biophys.
460:25–32. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang DH, Cohn L, Ray P, Bottomly K and
Ray A: Transcription factor GATA-3 is differentially expressed in
murine Th1 and Th2 cells and controls Th2-specific expression of
the interleukin-5 gene. J Biol Chem. 272:21597–21603. 1997.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang YS, Li SH, Guo J, et al: Role of
miR-145 in cardiac myofibroblast differentiation. J Mol Cell
Cardiol. 66:94–105. 2014. View Article : Google Scholar
|
25
|
Wang H, Leinwand LA and Anseth KS: Roles
of transforming growth factor-β1 and OB-cadherin in porcine cardiac
valve myofibroblast differentiation. FASEB J. 28:4551–4562. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu M, Han M, Li J, et al: 17beta-estradiol
inhibits angiotensin II-induced cardiac myofibroblast
differentiation. Eur J Pharmacol. 616:155–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Peng H, Carretero OA, Peterson EL, et al:
N-Acetyl-seryl-aspartyl-lysyl-proline inhibits ET-1-induced
collagen production by preserving Src homology 2-containing protein
tyrosine phosphatase-2 activity in cardiac fibroblasts. Pflugers
Arch. 464:415–423. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu X, Sun SQ, Hassid A and Ostrom RS:
cAMP inhibits transforming growth factor-beta-stimulated collagen
synthesis via inhibition of extracellular signal-regulated kinase
1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol.
70:1992–2003. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen LX, Yang K, Sun M, et al:
Fluorofenidone inhibits transforming growth factor-beta1-induced
cardiac myofibroblast differentiation. Pharmazie. 67:452–456.
2012.PubMed/NCBI
|
30
|
Wickramasinghe SR and Patel VV: Local
innervation and atrial fibrillation. Circulation. 128:1566–1575.
2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Iwasaki YK, Nishida K, Kato T and Nattel
S: Atrial fibrillation pathophysiology: implications for
management. Circulation. 124:2264–2274. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Magnani JW, Rienstra M, Lin H, et al:
Atrial fibrillation: current knowledge and future directions in
epidemiology and genomics. Circulation. 124:1982–1993. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Uesaka Y: Cerebral embolism and atrial
fibrillation. Brain Nerve. 65:761–769. 2013.In Japanese. PubMed/NCBI
|
34
|
Burstein B, Libby E, Calderone A and
Nattel S: Differential behaviors of atrial versus ventricular
fibroblasts: a potential role for platelet-derived growth factor in
atrial-ventricular remodeling differences. Circulation.
117:1630–1641. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Brown RD, Ambler SK, Mitchell MD and Long
CS: The cardiac fibroblast: therapeutic target in myocardial
remodeling and failure. Annu Rev Pharmacol Toxicol. 45:657–687.
2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bosman FT and Stamenkovic I: Functional
structure and composition of the extracellular matrix. J Pathol.
200:423–428. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jugdutt BI: Remodeling of the myocardium
and potential targets in the collagen degradation and synthesis
pathways. Curr Drug Targets Cardiovasc Haematol Disord. 3:1–30.
2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dobaczewski M, Chen W and Frangogiannis
NG: Transforming growth factor (TGF)-β signaling in cardiac
remodeling. J Mol Cell Cardiol. 51:600–606. 2011. View Article : Google Scholar :
|
39
|
Brooks WW and Conrad CH: Myocardial
fibrosis in transforming growth factor beta(1)heterozygous mice. J
Mol Cell Cardiol. 32:187–195. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Youn JY, Zhang J, Zhang Y, et al:
Oxidative stress in atrial fibrillation: an emerging role of NADPH
oxidase. J Mol Cell Cardiol. 62:72–79. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Weber KT, Sun Y, Bhattacharya SK, Ahokas
RA and Gerling IC: Myofibroblast-mediated mechanisms of
pathological remodelling of the heart. Nat Rev Cardiol. 10:15–26.
2013. View Article : Google Scholar
|
42
|
Kong P, Christia P and Frangogiannis NG:
The pathogenesis of cardiac fibrosis. Cell Mol Life Sci.
71:549–574. 2014. View Article : Google Scholar
|
43
|
Friedrichs K, Klinke A and Baldus S:
Inflammatory pathways underlying atrial fibrillation. Trends Mol
Med. 17:556–563. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tang W and Eisenbrand G: Salvia
miltiorrhiza Bge. Chinese drugs of plant origin. Springer-Verlag;
Berlin: pp. 891–902. 1992, View Article : Google Scholar
|
45
|
Yang L, Zou X, Liang Q, et al: Sodium
tanshinone IIA sulfonate depresses angiotensin II-induced
cardiomyocyte hypertrophy through MEK/ERK pathway. Exp Mol Med.
39:65–73. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shan H, Li X, Pan Z, et al: Tanshinone IIA
protects against sudden cardiac death induced by lethal arrhythmias
via repression of microRNA-1. Br J Pharmacol. 158:1227–1235. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Yi SL, Liu XJ, Zhong JQ and Zhang Y: Role
of caveolin-1 in atrial fibrillation as an anti-fibrotic signaling
molecule in human atrial fibroblasts. PLoS One. 9:e851442014.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Rahmutula D, Marcus GM, Wilson EE, et al:
Molecular basis of selective atrial fibrosis due to overexpression
of transforming growth factor-β1. Cardiovasc Res. 99:769–779. 2013.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Cucoranu I, Clempus R, Dikalova A, et al:
NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced
differentiation of cardiac fibroblasts into myofibroblasts. Circ
Res. 97:900–907. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wei LH, Huang XR, Zhang Y, et al: Smad7
inhibits angiotensin II-induced hypertensive cardiac remodelling.
Cardiovasc Res. 99:665–673. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yue J and Mulder KM: Requirement of
Ras/MAPK pathway activation by transforming growth factor beta for
transforming growth factor beta 1 production in a Smad-dependent
pathway. J Biol Chem. 275:30765–30773. 2000. View Article : Google Scholar : PubMed/NCBI
|
52
|
Leask A and Abraham DJ: TGF-beta signaling
and the fibrotic response. FASEB J. 18:816–827. 2004. View Article : Google Scholar : PubMed/NCBI
|
53
|
de Caestecker MP, Parks WT, Frank CJ, et
al: Smad2 transduces common signals from receptor serine-threonine
and tyrosine kinases. Genes Dev. 12:1587–1592. 1998. View Article : Google Scholar : PubMed/NCBI
|
54
|
Rosenkranz S: TGF-beta1 and angiotensin
networking in cardiac remodeling. Cardiovasc Res. 63:423–432. 2004.
View Article : Google Scholar : PubMed/NCBI
|