1
|
Yusuf S, Hawken S, Ounpuu S, et al: Effect
of potentially modifiable risk factors associated with myocardial
infarction In 52 countries (the INTERHEART study): case-control
study. Lancet. 364:937–952. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Topol EJ, Smith J, Plow EF and Wang QK:
Genetic susceptibility to myocardial infarction and coronary artery
disease. Hum Mol Genet. 15:R117–R123. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang Q: Molecular genetics of coronary
artery disease. Curr Opin Cardiol. 20:182–188. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Peden JF and Farrall M: Thirty-five common
variants for coronary artery disease: the fruits of much
collaborative labour. Hum Mol Genet. 20:R198–R205. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
CARDIoGRAMplusC4D Consortium: Large-scale
association analysis identifies new risk loci for coronary artery
disease. Nat Genet. 45:25–33. 2013.
|
6
|
Schunkert H, König IR, Kathiresan S, et
al: Large-scale association analysis identifies 13 new
susceptibility loci for coronary artery disease. Nat Genet.
43:333–338. 2011. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Itoh Y, Mizuki N, Shimada T, et al:
High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a
PCR-SSOP-Luminex method in the Japanese population. Immunogenetics.
57:717–729. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Peli W, Nairn AC and Page R: Structural
basis for protein phosphatase 1 regulation and specificity. FEBS J.
280:596–611. 2013. View Article : Google Scholar
|
9
|
Jarray R, Allain B, Borriello L, et al:
Depletion of the novel protein PHACTR-1 from human endothelial
cells abolishes tube formation and induces cell death receptor
apoptosis. Biochimie. 93:1668–1675. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mount PF, Kemp BE and Power DA: Regulation
of endothelial and myocardial NO synthesis by multi-site eNOS
phosphorylation. J Mol Cell Cardiol. 42:271–279. 2007. View Article : Google Scholar
|
11
|
Patel RS, Morris AA, Ahmed Y, et al: A
genetic risk variant for myocardial infarction on chromosome 6p24
is associated with impaired central hemodynamic indexes. Am J
Hypertens. 25:797–803. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Helgadottir A, Thorleifsson G, Manolescu
A, et al: A common variant on chromosome 9p21 affects the risk of
myocardial infarction. Science. 316:1491–1493. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
McPherson R, Pertsemlidis A, Kavaslar N,
et al: A common allele on chromosome 9 associated with coronary
heart disease. Science. 316:1488–1491. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Samani NJ, Erdmann J, Hall AS, et al:
Genomewide association analysis of coronary artery disease. N Engl
J Med. 357:443–453. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wellcome Trust Case Control Consortium:
Genome-wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature. 447:661–678. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Matarin M, Brown WM, Singleton A and Hardy
JA: Whole genome analyses suggest ischemic stroke and heart disease
share an association with polymorphisms on chromosome 9p21. Stroke.
39:1586–1589. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gschwendtner A, Bevan S, Cole JW, et al:
Sequence variants on chromosome 9p21.3 confer risk for
atherosclerotic stroke. Ann Neurol. 65:531–539. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Helgadottir A, Thorleifsson G, Magnusson
KP, et al: The same sequence variant on 9p21 associates with
myocardial infarction, abdominal aortic aneurysm and intracranial
aneurysm. Nat Genet. 40:217–224. 2008. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Musunuru K, Post WS, Herzog W, et al:
Association of single nucleotide polymorphisms on chromosome 9p21.3
with platelet reactivity: a potential mechanism for increased
vascular disease. Circ Cardiovasc Genet. 3:445–453. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Jarinova O, Stewart AF, Roberts R, et al:
Functional analysis of the chromosome 9p21.3 coronary artery
disease risk locus. Arterioscler Thromb Vasc Biol. 29:1671–1677.
2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Harismendy O, Notani D, Song X, et al:
9p21 DNA variants associated with coronary artery disease impair
interferon-γ signalling response. Nature. 470:264–268. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Visel A, Zhu Y, May D, et al: Targeted
deletion of the 9p21 non-coding coronary artery disease risk
interval in mice. Nature. 464:409–412. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fisher RM, Humphries SE and Talmud PJ:
Common variation in the lipoprotein lipase gene: effect on plasma
lipids and risk of atherosclerosis. Atherosclerosis. 135:145–159.
1997. View Article : Google Scholar
|
24
|
Eriksson JW, Buren J, Svensson M,
Olivecrona T and Olivecrona G: Postprandial regulation of blood
lipids and adipose tissue lipoprotein lipase in type 2 diabetes
patients and healthy control subjects. Atherosclerosis.
166:359–367. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jansen P, Giehl K, Nyengaard JR, et al:
Roles for the proneurotrophin receptor sortilin in neuronal
development, aging and brain injury. Nat Neurosci. 10:1449–1457.
2007. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Nielsen MS, Jacobsen C, Olivecrona G,
Gliemann J and Petersen CM: Sortilin/neurotensin receptor-3 binds
and mediates degradation of lipoprotein lipase. J Biol Chem.
274:8832–8836. 1999. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nilsson SK, Christensen S, Raarup MK, Ryan
RO, Nielsen MS and Olivecrona G: Endocytosis of apolipoprotein A-V
by members of the low density lipoprotein receptor and the VPS10p
domain receptor families. J Biol Chem. 283:25920–25927. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Stuiver M, Lainez S, Will C, et al: CNNM2,
encoding a baso-lateral protein required for renal Mg2+
handling, is mutated in dominant hypomagnesemia. Am J Hum Genet.
88:333–343. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
De Baaij JHF, Stuiver M, Meij IC, et al:
Membrane topology and intracellular processing of cyclin M2
(CNNM2). J Biol Chem. 287:13644–13655. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Khurana R, Moons L, Shafi S, et al:
Placental growth factor promotes atherosclerotic intimal thickening
and macrophage accumulation. Circulation. 111:2828–2836. 2005.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Pilarczyk K, Sattler KJ, Galili O, et al:
Placenta growth factor expression in human atherosclerotic carotid
plaques is related to plaque destabilization. Atherosclerosis.
196:333–340. 2008. View Article : Google Scholar
|
32
|
Roncal C, Buysschaert I, Gerdes N, et al:
Short-term delivery of anti-PlGF antibody delays progression of
atherosclerotic plaques to vulnerable lesions. Cardiovasc Res.
86:29–36. 2010. View Article : Google Scholar
|
33
|
Carmeliet P, Moons L, Luttun A, et al:
Synergism between vascular endothelial growth factor and placental
growth factor contributes to angiogenesis and plasma extravasation
in pathological conditions. Nat Med. 7:575–583. 2001. View Article : Google Scholar : PubMed/NCBI
|