1
|
Ross CA, Margolis RL, Reading SA, et al:
Neurobiology of schizophrenia. Neuron. 52:139–153. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lewis DA and Lieberman JA: Catching up on
schizophrenia: natural history and neurobiology. Neuron.
28:325–334. 2000. View Article : Google Scholar
|
3
|
Brown AS, van Os J, Driessens C, et al:
Further evidence of relation between prenatal famine and major
affective disorder. Am J Psychiatry. 157:190–195. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sullivan PF: The genetics of
schizophrenia. PLoS Med. 2:e2122005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Huttunen MO and Niskanen P: Prenatal loss
of father and psychiatric disorder. Arch Gen Psychiatry.
35:429–431. 1978. View Article : Google Scholar : PubMed/NCBI
|
6
|
King M, Nazroo J, Weich S, et al:
Psychotic symptoms in the general population of England - a
comparison of ethnic groups (The EMPIRIC study). Soc Psychiatry
Psychiatr Epidemiol. 40:375–381. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
King S, Laplante D and Joober R:
Understanding putative risk factors for schizophrenia:
retrospective and prospective studies. J Psychiatry Neurosci.
30:342–348. 2005.PubMed/NCBI
|
8
|
Lim C, Chong SA and Keefe R: Psychosocial
factors in the neurobiology of schizophrenia: a selective review.
Ann Acad Med Singapore. 38:402–406. 2009.PubMed/NCBI
|
9
|
Imamura Y, Nakane Y, Ohta Y and Kondo H:
Lifetime prevalence of schizophrenia among individuals prenatally
exposed to atomic bomb radiation in Nagasaki City. Acta Psychiatr
Scand. 100:344–349. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Meyer U and Feldon J: Epidemiology-driven
neurodevelopmental animal models of schizophrenia. Prog Neurobiol.
90:285–326. 2010. View Article : Google Scholar
|
11
|
Weinstock M: The long-term behavioural
consequences of prenatal stress. Neurosci Biobehav Rev.
32:1073–1086. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Seckl JR: Prenatal glucocorticoids and
long-term programming. Eur J Endocrinol. 151(Suppl 3): U49–U62.
2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
de Kloet ER, Sibug RM, Helmerhorst FM and
Schmidt MV: Stress, genes and the mechanism of programming the
brain for later life. Neurosci Biobehav Rev. 29:271–281. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Beydoun H and Saftlas AF: Physical and
mental health outcomes of prenatal maternal stress in human and
animal studies: a review of recent evidence. Paediatr Perinat
Epidemiol. 22:438–466. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee PR, Brady DL, Shapiro RA, et al:
Prenatal stress generates deficits in rat social behavior: Reversal
by oxytocin. Brain Res. 1156:152–167. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kinnunen AK, Koenig JI and Bilbe G:
Repeated variable prenatal stress alters pre- and postsynaptic gene
expression in the rat frontal pole. J Neurochem. 86:736–748. 2003.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Koenig JI, Elmer GI, Shepard PD, et al:
Prenatal exposure to a repeated variable stress paradigm elicits
behavioral and neuroendocrinological changes in the adult
offspring: potential relevance to schizophrenia. Behav Brain Res.
156:251–261. 2005. View Article : Google Scholar
|
18
|
Koenig JI, Elmer GI, Shepard PD, et al:
Stress during gestation produces alterations in adult rat behavior:
relevance to schizophrenia. Soc Neurosci Abstr. 495–496. 2002.
|
19
|
Lordi B, Protais P, Mellier D and Caston
J: Acute stress in pregnant rats: effects on growth rate, learning,
and memory capabilities of the offspring. Physiol Behav.
62:1087–1092. 1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vallée M, MacCari S, Dellu F, et al:
Long-term effects of prenatal stress and postnatal handling on
age-related glucocorticoid secretion and cognitive performance: a
longitudinal study in the rat. Eur J Neurosci. 11:2906–2016. 1999.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Szuran TF, Pliska V, Pokorny J and Welzl
H: Prenatal stress in rats: effects on plasma corticosterone,
hippocampal glucocorticoid receptors, and maze performance. Physiol
Behav. 71:353–362. 2000. View Article : Google Scholar
|
22
|
Nishio H, Kasuga S, Ushijima M and Harada
Y: Prenatal stress and postnatal development of neonatal
rats-sex-dependent effects on emotional behavior and learning
ability of neonatal rats. Int J Dev Neurosci. 19:37–45. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Walder DJ, Walker EF and Lewine RJ:
Cognitive functioning, cortisol release, and symptom severity in
patients with schizophrenia. Biol Psychiatry. 48:1121–1132. 2000.
View Article : Google Scholar
|
24
|
Kuperberg G and Heckers S: Schizophrenia
and cognitive function. Curr Opin Neurobiol. 10:205–210. 2000.
View Article : Google Scholar
|
25
|
Hayashi A, Nagaoka M, Yamada K, et al:
Maternal stress induces synaptic loss and developmental
disabilities of offspring. Int J Dev Neurosci. 16:209–216. 1998.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lemaire V, Koehl M, Le Moal M and Abrous
DN: Prenatal stress produces learning deficits associated with an
inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci
USA. 97:11032–11037. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Martínez-Téllez RI, Hernández-Torres E,
Gamboa C and Flores G: Prenatal stress alters spine density and
dendritic length of nucleus accumbens and hippocampus neurons in
rat offspring. Synapse. 63:794–804. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Van den Hove DL, Kenis G, Brass A, et al:
Vulnerability versus resilience to prenatal stress in male and
female rats; implications from gene expression profiles in the
hippocampus and frontal cortex. Eur Neuropsychopharmacol.
23:1226–1246. 2013. View Article : Google Scholar
|
29
|
Mairesse J, Vercoutter-Edouart AS,
Marrocco J, et al: Proteomic characterization in the hippocampus of
prenatally stressed rats. J Proteomics. 75:1764–1770. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Dulawa SC, Holick KA, Gundersen B and Hen
R: Effects of chronic fluoxetine in animal models of anxiety and
depression. Neuropsychopharmacology. 29:1321–1330. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schroeder M, Sultany T and Weller A:
Prenatal stress effects on emotion regulation differ by genotype
and sex in prepubertal rats. Dev Psychobiol. 55:176–192. 2013.
View Article : Google Scholar
|
32
|
Becker A, Peters B, Schroeder H, et al:
Ketamine-induced changes in rat behaviour: A possible animal model
of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.
27:687–700. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Joo J, Lee S, Nah SS, et al: Lasp1 is
down-regulated in NMDA receptor antagonist-treated mice and
implicated in human schizophrenia susceptibility. J Psychiatr Res.
47:105–112. 2013. View Article : Google Scholar
|
34
|
American Psychiatric Association:
Diagnostic and Statistical Manual of Mental Disorders. 4th edition.
American Psychiatric Press; Washington: pp. p8861994
|
35
|
Nakata K, Ujike H, Sakai A, et al: The
human dihydropyrimidinase-related protein 2 gene on chromosome 8p21
is associated with paranoid-type schizophrenia. Biol Psychiatry.
53:571–576. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lee BK, Lee SJ, Joo JS, et al: Association
of Glutathione S-transferase genes (GSTM1 and GSTT1) polymorphisms
with hypertension in lead-exposed workers. Mol Cell Toxicol.
8:203–208. 2012. View Article : Google Scholar
|
37
|
Goshima Y, Nakamura F, Strittmatter P and
Strittmatter SM: Collapsin-induced growth cone collapse mediated by
an intracellular protein related to UNC-33. Nature. 376:509–514.
1995. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gabriel SB, Schaffner SF, Nguyen H, et al:
The structure of haplotype blocks in the human genome. Science.
296:2225–2229. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Arai M and Itokawa M: A hard road in
psychiatric genetics: schizophrenia and DPYSL2. J Hum Genet.
55:397–399. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Arimura N, Menager C, Fukata Y and
Kaibuchi K: Role of CRMP-2 in neuronal polarity. J Neurobiol.
58:34–47. 2004. View Article : Google Scholar
|
41
|
Lin PC, Chan PM, Hall C and Manser E:
Collapsin response mediator proteins (CRMPs) are a new class of
microtubule-associated protein (MAP) that selectively interacts
with assembled microtubules via a taxol-sensitive binding
interaction. J Biol Chem. 286:41466–41478. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Higurashi M, Iketani M, Takei K, et al:
Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth
cone steering. Dev Neurobiol. 72:1528–1540. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Brittain JM, Piekarz AD, Wang Y, et al: An
atypical role for collapsin response mediator protein 2 (CRMP-2) in
neurotransmitter release via interaction with presynaptic
voltage-gated calcium channels. J Biol Chem. 284:31375–31390. 2009.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Johnston-Wilson NL, Sims CD, Hofmann JP,
et al: Disease-specific alterations in frontal cortex brain
proteins in schizophrenia, bipolar disorder, and major depressive
disorder. The Stanley Neuropathology Consortium. Mol Psychiatry.
5:142–149. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fallin MD, Lasseter VK, Liu Y, et al:
Linkage and association on 8p21.2–p21.1 in schizophrenia. Am J Med
Genet B Neuropsychiatr Genet. 156:188–197. 2011. View Article : Google Scholar : PubMed/NCBI
|