1
|
Wiwanitkit V: Dengue fever: diagnosis and
treatment. Expert Rev Anti Infect Ther. 8:841–845. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rodenhuis-Zybert IA, Wilschut J and Smit
JM: Dengue virus life cycle: viral and host factors modulating
infectivity. Cell Mol Life Sci. 67:2773–2786. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yocupicio-Monroy M, Padmanabhan R, Medina
F and del Angel RM: Mosquito La protein binds to the 3′
untranslated region of the positive and negative polarity dengue
virus RNAs and relocates to the cytoplasm of infected cells.
Virology. 357:29–40. 2007. View Article : Google Scholar
|
4
|
Yocupicio-Monroy RM, Medina F, Reyes-del
Valle J and del Angel RM: Cellular proteins from human monocytes
bind to dengue 4 virus minus-strand 3′ untranslated region RNA. J
Virol. 77:3067–3076. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
De Nova-Ocampo M, Villegas-Sepúlveda N and
del Angel RM: Translation elongation factor-1alpha, La, and PTB
interact with the 3′ untranslated region of dengue 4 virus RNA.
Virology. 295:337–347. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Polacek C, Friebe P and Harris E:
Poly(A)-binding protein binds to the non-polyadenylated 3′
untranslated region of dengue virus and modulates translation
efficiency. J Gen Virol. 90:687–692. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gomila RC, Martin GW and Gehrke L: NF90
binds the dengue virus RNA 3′ terminus and is a positive regulator
of dengue virus replication. PLoS One. 6:e166872011. View Article : Google Scholar
|
8
|
Lei Y, Huang Y, Zhang H, Yu L, Zhang M and
Dayton A: Functional interaction between cellular p100 and the
dengue virus 3′ UTR. J Gen Virol. 92:796–806. 2011. View Article : Google Scholar
|
9
|
Paranjape SM and Harris E: Y box-binding
protein-1 binds to the dengue virus 3′-untranslated region and
mediates antiviral effects. J Biol Chem. 282:30497–30508. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ward AM, Bidet K, Yinglin A, Ler SG, Hogue
K, Blackstock W, Gunaratne J and Garcia-Blanco MA: Quantitative
mass spectrometry of DENV-2 RNA-interacting proteins reveals that
the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3′ UTR
structures. RNA Biol. 8:1173–1186. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Beggs JD: Lsm proteins and RNA processing.
Biochem Soc Trans. 33:433–438. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Khusial P, Plaag R and Zieve GW: LSm
proteins form heptameric rings that bind to RNA via repeating
motifs. Trends Biochem Sci. 30:522–528. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Diez J, Ishikawa M, Kaido M and Ahlquist
P: Identification and characterization of a host protein required
for efficient template selection in viral RNA replication. Proc
Natl Acad Sci USA. 97:3913–3918. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Galao RP, Chari A, Alves-Rodrigues I,
Lobão D, Mas A, Kambach C, Fischer U and Díez J: LSm1-7 complexes
bind to specific sites in viral RNA genomes and regulate their
translation and replication. RNA. 16:817–827. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pérez-Vilaró G, Scheller N, Saludes V and
Díez J: Hepatitis C virus infection alters P-body composition but
is independent of P-body granules. J Virol. 86:8740–8749. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Scheller N, Mina LB, Galao RP, Chari A,
Giménez-Barcons M, Noueiry A, Fischer U, Meyerhans A and Díez J:
Translation and replication of hepatitis C virus genomic RNA
depends on ancient cellular proteins that control mRNA fates. Proc
Natl Acad Sci USA. 106:13517–13522. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pang X, Zhang M and Dayton AI: Development
of Dengue virus type 2 replicons capable of prolonged expression in
host cells. BMC Microbiol. 1:182001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Polo S, Ketner G, Levis R and Falgout B:
Infectious RNA transcripts from full-length dengue virus type 2
cDNA clones made in yeast. J Virol. 71:5366–5374. 1997.PubMed/NCBI
|
19
|
Emara MM and Brinton MA: Interaction of
TIA-1/TIAR with West Nile and dengue virus products in infected
cells interferes with stress granule formation and processing body
assembly. Proc Natl Acad Sci USA. 104:9041–9046. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Eulalio A, Behm-Ansmant I, Schweizer D and
Izaurralde E: P-body formation is a consequence, not the cause, of
RNA- mediated gene silencing. Mol Cell Biol. 27:3970–3981. 2007.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Jakymiw A, Pauley KM, Li S, Ikeda K, Lian
S, Eystathioy T, Satoh M, Fritzler MJ and Chan EK: The role of
GW/P-bodies in RNA processing and silencing. J Cell Sci.
120:1317–1323. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chan EK, Yao B and Fritzler MJ:
Reflections on ten years of history of, and future prospects for,
GW182 and GW/P body research. Adv Exp Med Biol. 768:261–270. 2013.
View Article : Google Scholar
|
23
|
Coller J and Parker R: Eukaryotic mRNA
decapping. Annu Rev Biochem. 73:861–890. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yu SF, Lujan P, Jackson DL, Emerman M and
Linial ML: The DEAD-box RNA helicase DDX6 is required for efficient
encapsidation of a retroviral genome. PLoS Pathog. 7:e10023032011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ariumi Y, Kuroki M, Kushima Y, Osugi K,
Hijikata M, Maki M, Ikeda M and Kato N: Hepatitis C virus hijacks
P-body and stress granule components around lipid droplets. J
Virol. 85:6882–6892. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Men R, Bray M, Clark D, Chanock RM and Lai
CJ: Dengue type 4 virus mutants containing deletions in the 3′
noncoding region of the RNA genome: analysis of growth restriction
in cell culture and altered viremia pattern and immunogenicity in
rhesus monkeys. J Virol. 70:3930–3937. 1996.PubMed/NCBI
|
27
|
Agis-Juárez RA, Galván I, Medina F,
Daikoku T, Padmanabhan R, Ludert JE and del Angel RM:
Polypyrimidine tract-binding protein is relocated to the cytoplasm
and is required during dengue virus infection in Vero cells. J Gen
Virol. 90:2893–2901. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Roberts AP, Doidge R, Tarr AW and Jopling
CL: 2013. The P body protein LSm1 contributes to stimulation of
hepatitis C virus translation, but not replication, by
microRNA-122. Nucleic Acids Res. 42:1257–1269. 2014. View Article : Google Scholar :
|
29
|
Chowdhury A, Mukhopadhyay J and Tharun S:
The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic
ability to distinguish between oligoadenylated and polyadenylated
RNAs. RNA. 13:998–1016. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Beckham CJ and Parker R: P bodies, stress
granules, and viral life cycles. Cell Host Microbe. 3:206–212.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Parker R and Sheth U: P bodies and the
control of mRNA translation and degradation. Mol Cell. 25:635–646.
2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Huys A, Thibault PA and Wilson JA:
Modulation of hepatitis C virus RNA accumulation and translation by
DDX6 and miR-122 are mediated by separate mechanisms. PLoS One.
8:e674372013. View Article : Google Scholar : PubMed/NCBI
|