1
|
Leyden JJ: The evolving role of
Propionibacterium acnes in acne. Semin Cutan Med Surg. 20:139–143.
2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jappe U: Pathological mechanisms of acne
with special emphasis on Propionibacterium acnes and related
therapy. Acta Derm Venereol. 83:241–248. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Toyoda M and Morohashi M: Pathogenesis of
acne. Med Electron Microsc. 34:29–40. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Leyden JJ, McGinley KJ, Mills OH and
Kligman AM: Propionibacterium levels in patients with and without
acne vulgaris. J Invest Dermatol. 65:382–384. 1975. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vowels BR, Yang S and Leyden JJ: Induction
of proinflammatory cytokines by a soluble factor of
Propionibacterium acnes: implications for chronic inflammatory
acne. Infect Immun. 63:3158–3165. 1995.PubMed/NCBI
|
6
|
Raingeaud J and Pierre J: Interleukin-4
downregulates TNFalpha-induced IL-8 production in keratinocytes.
FEBS Lett. 579:3953–3959. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Feliciani C, Gupta AK and Sauder DN:
Keratinocytes and cytokine/growth factors. Crit Rev Oral Biol Med.
7:300–318. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Baggiolini M: Chemokines and leukocyte
traffic. Nature. 392:565–568. 1998. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Ochsendorf F: Systemic antibiotic therapy
of acne vulgaris. J Dtsch Dermatol Ges. 4:828–841. 2006.In German.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Eady EA: Bacterial resistance in acne.
Dermatology. 196:59–66. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Eady EA, Cove JH, Holland KT and Cunliffe
WJ: Erythromycin resistant propionibacteria in antibiotic treated
acne patients: Association with therapeutic failure. Br J Dermatol.
121:51–57. 1989. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nam C, Kim S, Sim Y and Chang I: Anti-acne
effects of Oriental herb extracts: A novel screening method to
select anti-acne agents. Skin Pharmacol Appl Skin Physiol.
16:84–90. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tan HH: Antibacterial therapy for acne: A
guide to selection and use of systemic agents. Am J Clin Dermatol.
4:307–314. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hider RC: Honeybee venom: A rich source of
pharmacologically active peptides. Endeavour. 12:60–65. 1988.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Habermann E: Bee and wasp venoms. Science.
177:314–322. 1972. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kwon YB, Lee HJ, Han HJ, et al: The
water-soluble fraction of bee venom produces antinociceptive and
anti-inflammatory effects on rheumatoid arthritis in rats. Life
Sci. 71:191–204. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kwon YB, Lee JD, Lee HJ, et al: Bee venom
injection into an acupuncture point reduces arthritis associated
edema and nociceptive responses. Pain. 90:271–280. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Stieger M, Wuthrich B, Wyss S and Kopper
E: Clinical picture and diagnosis of bee-venom allergy. A
comparison between skin tests and RAST determinations. Hautarzt.
29:632–637. 1978.In German. PubMed/NCBI
|
19
|
Ip SW, Liao SS, Lin SY, et al: The role of
mitochondria in bee venom-induced apoptosis in human breast cancer
MCF7 cells. In Vivo. 22:237–245. 2008.PubMed/NCBI
|
20
|
Orsolic N: Bee venom in cancer therapy.
Cancer Metastasis Rev. 31:173–194. 2012. View Article : Google Scholar
|
21
|
Park MH, Choi MS, Kwak DH, et al:
Anti-cancer effect of bee venom in prostate cancer cells through
activation of caspase pathway via inactivation of NF-kappaB.
Prostate. 71:801–812. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dombrowski Y, Peric M, Koglin S, et al:
Honey bee (Apis mellifera) venom induces AIM2 inflammasome
activation in human keratinocytes. Allergy. 67:1400–1407. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Han SM, Lee GG and Park KK: Acute dermal
toxicity study of bee venom (Apis mellifera L.) in rats. Toxicol
Res. 28:99–102. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guin JD, Huber DS and Gielerak PL:
Antibiotic sensitivity of comedonal Propionibacterium acnes. Acta
Derm Venereol. 59:552–554. 1979.PubMed/NCBI
|
25
|
Webster GF and Graber EM: Antibiotic
treatment for acne vulgaris. Semin Cutan Med Surg. 27:183–187.
2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Humphrey S: Antibiotic resistance in acne
treatment. Skin Therapy Lett. 17:1–3. 2012.PubMed/NCBI
|
27
|
Park HJ, Lee SH, Son DJ, et al:
Antiarthritic effect of bee venom: Inhibition of inflammation
mediator generation by suppression of NF-kappaB through interaction
with the p50 subunit. Arthritis Rheum. 50:3504–3515. 2004.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee WR, Kim SJ, Park JH, et al: Bee venom
reduces athero-sclerotic lesion formation via anti-inflammatory
mechanism. Am J Chin Med. 38:1077–1092. 2010. View Article : Google Scholar
|
29
|
Jugeau S, Tenaud I, Knol AC, et al:
Induction of toll-like receptors by Propionibacterium acnes. Br J
Dermatol. 153:1105–1113. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim J, Ochoa MT, Krutzik SR, et al:
Activation of toll-like receptor 2 in acne triggers inflammatory
cytokine responses. J Immunol. 169:1535–1541. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Koreck A, Pivarcsi A, Dobozy A and Kemeny
L: The role of innate immunity in the pathogenesis of acne.
Dermatology. 206:96–105. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim J: Review of the innate immune
response in acne vulgaris: Activation of Toll-like receptor 2 in
acne triggers inflammatory cytokine responses. Dermatology.
211:193–198. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hari A, Flach TL, Shi Y and Mydlarski PR:
Toll-like receptors: Role in dermatological disease. Mediators
Inflamm. 2010:4372462010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pivarcsi A, Bodai L, Rethi B, et al:
Expression and function of Toll-like receptors 2 and 4 in human
keratinocytes. Int Immunol. 15:721–730. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kollisch G, Kalali BN, Voelcker V, et al:
Various members of the Toll-like receptor family contribute to the
innate immune response of human epidermal keratinocytes.
Immunology. 114:531–541. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schmidt N and Gans EH: Tretinoin: A review
of its anti-inflammatory properties in the treatment of acne. J
Clin Aesthet Dermatol. 4:22–29. 2011.PubMed/NCBI
|
37
|
Kock A, Schwarz T, Kirnbauer R, et al:
Human keratinocytes are a source for tumor necrosis factor alpha:
Evidence for synthesis and release upon stimulation with endotoxin
or ultraviolet light. J Exp Med. 172:1609–1614. 1990. View Article : Google Scholar : PubMed/NCBI
|
38
|
Beljaards RC, Van Beek P, Nieboer C, Stoof
TJ and Boorsma DM: The expression of interleukin-8 receptor in
untreated and treated psoriasis. Arch Dermatol Res. 289:440–443.
1997. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nagy I, Pivarcsi A, Koreck A, Szell M,
Urban E and Kemeny L: Distinct strains of Propionibacterium acnes
induce selective human beta-defensin-2 and interleukin-8 expression
in human keratinocytes through toll-like receptors. J Invest
Dermatol. 124:931–938. 2005. View Article : Google Scholar : PubMed/NCBI
|