1
|
Eller MS, Yaar M and Gilchrest BA: DNA
damage and melanogenesis. Nature. 372:413–414. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hearing VJ: Biogenesis of pigment
granules: a sensitive way to regulate melanocyte function. J
Dermatol Sci. 37:3–14. 2005. View Article : Google Scholar
|
3
|
Brenner M and Hearing VJ: The protective
role of melanin against UV damage in human skin. Photochem
Photobiol. 84:539–549. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
del Marmol V and Beermann F: Tyrosinase
and related proteins in mammalian pigmentation. FEBS Lett.
381:165–168. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hearing VJ and Jiménez M: Mammalian
tyrosinase - the critical regulatory control point in melanocyte
pigmentation. Int J Biochem. 19:1141–1147. 1987. View Article : Google Scholar
|
6
|
Yokoyama K, Yasumoto K, Suzuki H and
Shibahara S: Cloning of the human DOPAchrome
tautomerase/tyrosinase-related protein 2 gene and identification of
two regulatory regions required for its pigment cell-specific
expression. J Biol Chem. 269:27080–27087. 1994.PubMed/NCBI
|
7
|
Kobayashi T, Urabe K, Winder A, et al:
Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in
melanin biosynthesis. EMBO J. 13:5818–5825. 1994.PubMed/NCBI
|
8
|
Hemesath TJ, Price ER, Takemoto C,
Badalian T and Fisher DE: MAP kinase links the transcription factor
Microphthalmia to c-Kit signalling in melanocytes. Nature.
391:298–301. 1998. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Price ER, Ding HF, Badalian T, et al:
Lineage-specific signaling in melanocytes. C-kit stimulation
recruits p300/CBP to microphthalmia. J Biol Chem. 273:17983–17986.
1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Saito H, Yasumoto K, Takeda K, Takahashi
K, Yamamoto H and Shibahara S: Microphthalmia-associated
transcription factor in the Wnt signaling pathway. Pigment Cell
Res. 16:261–265. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Widlund HR and Fisher DE:
Microphthalamia-associated transcription factor: a critical
regulator of pigment cell development and survival. Oncogene.
22:3035–3041. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Oka M, Nagai H, Ando H, et al: Regulation
of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway
in human G361 melanoma cells. J Invest Dermatol. 115:699–703. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim DS, Kim SY, Chung JH, Kim KH, Eun HC
and Park KC: Delayed ERK activation by ceramide reduces melanin
synthesis in human melanocytes. Cell Signal. 14:779–785. 2002.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Buscà R, Bertolotto C, Ortonne JP and
Ballotti R: Inhibition of the phosphatidylinositol
3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell
differentiation. J Biol Chem. 271:31824–31830. 1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Englaro W, Bertolotto C, Buscà R, et al:
Inhibition of the mitogen-activated protein kinase pathway triggers
B16 melanoma cell differentiation. J Biol Chem. 273:9966–9970.
1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fisher GJ, Wang ZQ, Datta SC, Varani J,
Kang S and Voorhees JJ: Pathophysiology of premature skin aging
induced by ultraviolet light. N Engl J Med. 337:1419–1428. 1997.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Sinha RP and Häder DP: UV-induced DNA
damage and repair: a review. Photochem Photobiol Sci. 1:225–236.
2002. View
Article : Google Scholar
|
18
|
Baadsgaard O: In vivo ultraviolet
irradiation of human skin results in profound perturbation of the
immune system. Relevance to ultraviolet-induced skin cancer. Arch
Dermatol. 127:99–109. 1991. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hedstrand H, Ekwall O, Olsson MJ, et al:
The transcription factors SOX9 and SOX10 are vitiligo autoantigens
in autoimmune polyendocrine syndrome type I. J Biol Chem.
276:35390–35395. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Seyedalinaghi SA, Karami N, Hajiabdolbaghi
M and Hosseini M: Vitiligo in a patient associated with human
immunodeficiency virus infection and repigmentation under
antiretroviral therapy. J Eur Acad Dermatol Venereol. 23:840–841.
2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Scherschun L, Kim JJ and Lim HW:
Narrow-band ultraviolet B is a useful and well-tolerated treatment
for vitiligo. J Am Acad Dermatol. 44:999–1003. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu HB, Zhang CR, Dong SH, Dong L, Wu Y
and Yue JM: Limonoids and triterpenoids from the seeds of Melia
azedarach. Chem Pharm Bull (Tokyo). 59:1003–1007. 2011. View Article : Google Scholar
|
23
|
Wu SB, Bao QY, Wang WX, et al: Cytotoxic
triterpenoids and steroids from the bark of Melia azedarach. Planta
Med. 77:922–928. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Mallick S, Singh SK, Sarkar C, Saha B and
Bhadra R: Human placental lipid induces melanogenesis by increasing
the expression of tyrosinase and its related proteins in vitro.
Pigment Cell Res. 18:25–33. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiang Z, Li S, Liu Y, Deng P, Huang J and
He G: Sesamin induces melanogenesis by microphthalmia-associated
transcription factor and tyrosinase up-regulation via cAMP
signaling pathway. Acta Biochim Biophys Sin (Shanghai). 43:763–770.
2011. View Article : Google Scholar
|
27
|
Nagata H, Takekoshi S, Takeyama R, Homma T
and Yoshiyuki Osamura R: Quercetin enhances melanogenesis by
increasing the activity and synthesis of tyrosinase in human
melanoma cells and in normal human melanocytes. Pigment Cell Res.
17:66–73. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Villareal MO, Han J, Matsuyama K, et al:
Lupenone from Erica multiflora leaf extract stimulates
melanogenesis in B16 murine melanoma cells through the inhibition
of ERK1/2 activation. Planta Med. 79:236–243. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Moreira CG, Horinouchi CD, Souza-Filho CS,
et al: Hyperpigmentant activity of leaves and flowers extracts of
Pyrostegia venusta on murine B16F10 melanoma. J Ethnopharmacol.
141:1005–1011. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Carpinella MC, Defago MT, Valladares G and
Palacios SM: Antifeedant and insecticide properties of a limonoid
from Melia azedarach (Meliaceae) with potential use for pest
management. J Agric Food Chem. 51:369–374. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pifarré MP, Berra A, Coto CE and Alché LE:
Therapeutic action of meliacine, a plant-derived antiviral, on
HSV-induced ocular disease in mice. Exp Eye Res. 75:327–334. 2002.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Bueno CA, Lombardi MG, Sales ME and Alché
LE: A natural antiviral and immunomodulatory compound with
antiangiogenic properties. Microvasc Res. 84:235–241. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kikuchi T, Pan X, Ishii K, et al:
Cytotoxic and apoptosis-inducing activities of
12-O-Acetylazedarachin B from the fruits of Melia azedarach in
human cancer cell lines. Biol Pharm Bull. 36:135–139. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Koo JH, Rhee KS, Koh HW, Jang HY, Park BH
and Park JW: Guggulsterone inhibits melanogenesis in B16 murine
melanoma cells by downregulating tyrosinase expression. Int J Mol
Med. 30:974–978. 2012.PubMed/NCBI
|
35
|
Jeon S, Kim NH, Koo BS, Lee HJ and Lee AY:
Bee venom stimulates human melanocyte proliferation, melanogenesis,
dendricity and migration. Exp Mol Med. 39:603–613. 2007. View Article : Google Scholar : PubMed/NCBI
|