1
|
Kusminski CM, Shetty S, Orci L, Unger RH
and Scherer PE: Diabetes and apoptosis: Lipotoxicity. Apoptosis.
14:1484–1495. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kim JW and Yoon KH: Glucolipotoxicity in
pancreatic β-cells. Diabetes Metab J. 35:444–450. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rial E, Rodríguez-Sánchez L, Gallardo-Vara
E, Zaragoza P, Moyano E and González-Barroso MM: Lipotoxicity,
fatty acid uncoupling and mitochondrial carrier function. Biochim
Biophys Acta. 1797:800–806. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kim W and Egan JM: The role of incretins
in glucose homeo-stasis and diabetes treatment. Pharmacol Rev.
60:470–512. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Buteau J: GLP-1 receptor signaling:
Effects on pancreatic beta-cell proliferation and survival.
Diabetes Metab. 34(Suppl 2): S73–S77. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lamont BJ and Andrikopoulos S: Hope and
fear for new classes of type 2 diabetes drugs: Is there preclinical
evidence that incretin-based therapies alter pancreatic morphology?
J Endocrinol. 221:T43–T61. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang Y, Tong Y, Gong M, Lu Y, Wang C, Zhou
M, Yang Q, Mao T and Tong N: Activation of PPARβ/δ protects
pancreatic β cells from palmitate-induced apoptosis by upregulating
the expression of GLP-1 receptor. Cell Signal. 26:268–278. 2014.
View Article : Google Scholar
|
8
|
Kemp DM and Habener JF: Insulinotropic
hormone glucagon-like peptide-1 (GLP-1) activation of insulin gene
promoter inhibited by p38 mitogen-activated protein kinase.
Endocrinology. 142:1179–1187. 2001.PubMed/NCBI
|
9
|
Lotfy M, Singh J, Rashed H, Tariq S,
Zilahi E and Adeghate E: Mechanism of the beneficial and protective
effects of exenatide in diabetic rats. J Endocrinol. 220:291–304.
2014. View Article : Google Scholar
|
10
|
Chen LN, Lyu J, Yang XF, Ji WJ, Yuan BX,
Chen MX, Ma X and Wang B: Liraglutide ameliorates glycometabolism
and insulin resistance through the upregulation of GLUT4 in
diabetic KKAy mice. Int J Mol Med. 32:892–900. 2013.PubMed/NCBI
|
11
|
Hendarto H, Inoguchi T, Maeda Y, Ikeda N,
Zheng J, Takei R, Yokomizo H, Hirata E, Sonoda N and Takayanagi R:
GLP-1 analog liraglutide protects against oxidative stress and
albu-minuria in streptozotocin-induced diabetic rats via protein
kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism.
61:1422–1434. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu Z, Stanojevic V, Avadhani S, Yano T
and Habener JF: Stromal cell-derived factor-1 (SDF-1)/chemokine
(C-X-C motif) receptor 4 (CXCR4) axis activation induces
intra-islet glucagon-like peptide-1 (GLP-1) production and enhances
beta cell survival. Diabetologia. 54:2067–2076. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pugazhenthi U, Velmurugan K, Tran A,
Mahaffey G and Pugazhenthi S: Anti-inflammatory action of exendin-4
in human islets is enhanced by phosphodiesterase inhibitors:
Potential therapeutic benefits in diabetic patients. Diabetologia.
53:2357–2368. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Marchetti P, Lupi R, Bugliani M,
Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D’Aleo V,
Piro S, Marselli L, et al: A local glucagon-like peptide 1 (GLP-1)
system in human pancreatic islets. Diabetologia. 55:3262–3272.
2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Habener JF and Stanojevic V: Alpha cells
come of age. Trends Endocrinol Metab. 24:153–163. 2013. View Article : Google Scholar
|
16
|
Habener JF and Stanojevic V: α-cell role
in β-cell generation and regeneration. Islets. 4:188–198. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Nie Y, Nakashima M, Brubaker PL, Li QL,
Perfetti R, Jansen E, Zambre Y, Pipeleers D and Friedman TC:
Regulation of pancreatic PC1 and PC2 associated with increased
glucagon-like peptide 1 in diabetic rats. J Clin Invest.
105:955–965. 2000. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang Y, Zhang Y, Bone RN, Cui W, Peng JB,
Siegal GP, Wang H and Wu H: Regeneration of pancreatic non-β
endocrine cells in adult mice following a single diabetes-inducing
dose of streptozotocin. PLoS One. 7:e366752012. View Article : Google Scholar
|
19
|
Yano T, Liu Z, Donovan J, Thomas MK and
Habener JF: Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates
diabetes in mice and promotes pancreatic beta-cell survival by
activation of the prosurvival kinase Akt. Diabetes. 56:2946–2957.
2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Thyssen S, Arany E and Hill DJ: Ontogeny
of regeneration of beta-cells in the neonatal rat after treatment
with streptozotocin. Endocrinology. 147:2346–2356. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lau T, Carlsson PO and Leung PS: Evidence
for a local angiotensin-generating system and dose-dependent
inhibition of glucose-stimulated insulin release by angiotensin II
in isolated pancreatic islets. Diabetologia. 47:240–248. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang HW, Mizuta M, Saitoh Y, Noma K, Ueno
H and Nakazato M: Glucagon-like peptide-1 and candesartan
additively improve glucolipotoxicity in pancreatic β-cells.
Metabolism. 60:1081–1089. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jaksch C and Thams P: A critical role for
CK2 in cytokine-induced activation of NFκB in pancreatic β cell
death. Endocrine. 47:117–128. 2014. View Article : Google Scholar :
|
24
|
Yuan L, Lu CL, Wang Y, Li Y and Li XY: Ang
(1-7) protects islet endothelial cells from palmitate-induced
apoptosis by AKT, eNOS, p38 MAPK, and JNK pathways. J Diabetes Res.
2014:3914762014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fraulob JC, Ogg-Diamantino R,
Fernandes-Santos C, Aguila MB and Mandarim-de-Lacerda CA: A mouse
model of metabolic syndrome: Insulin resistance, fatty liver and
non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a
high fat diet. J Clin Biochem Nutr. 46:212–223. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Davidson HW: (Pro)Insulin processing: A
historical perspective. Cell Biochem Biophys. 40(Suppl 3): 143–158.
2004.PubMed/NCBI
|
27
|
Portela-Gomes GM, Grimelius L and
Stridsberg M: Prohormone convertases 1/3, 2, furin and protein 7B2
(Secretogranin V) in endocrine cells of the human pancreas. Regul
Pept. 146:117–124. 2008. View Article : Google Scholar
|
28
|
Kieffer TJ, McIntosh CH and Pederson RA:
Degradation of glucose-dependent insulinotropic polypeptide and
truncated glucagon-like peptide 1 in vitro and in vivo by
dipeptidyl peptidase IV. Endocrinology. 136:3585–3596.
1995.PubMed/NCBI
|
29
|
Mondragon A, Davidsson D, Kyriakoudi S,
Bertling A, Gomes-Faria R, Cohen P, Rothery S, Chabosseau P, Rutter
GA and da Silva Xavier G: Divergent effects of liraglutide,
exendin-4, and sitagliptin on beta-cell mass and indicators of
pancreatitis in a mouse model of hyperglycaemia. PLoS One.
9:e1048732014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gloire G, Legrand-Poels S and Piette J:
NF-kappaB activation by reactive oxygen species: Fifteen years
later. Biochem Pharmacol. 72:1493–1505. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Quan W, Jo EK and Lee MS: Role of
pancreatic β-cell death and inflammation in diabetes. Diabetes Obes
Metab. 15(Suppl 3): 141–151. 2013. View Article : Google Scholar
|
32
|
O’Malley TJ, Fava GE, Zhang Y, Fonseca VA
and Wu H: Progressive change of intra-islet GLP-1 production during
diabetes development. Diabetes Metab Res Rev. 30:661–668. 2014.
View Article : Google Scholar
|
33
|
Hansen AM, Bödvarsdottir TB, Nordestgaard
DN, Heller RS, Gotfredsen CF, Maedler K, Fels JJ, Holst JJ and
Karlsen AE: Upregulation of alpha cell glucagon-like peptide 1
(GLP-1) in Psammomys obesus - an adaptive response to
hyperglycaemia? Diabetologia. 54:1379–1387. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Talchai C, Xuan S, Lin HV, Sussel L and
Accili D: Pancreatic β cell dedifferentiation as a mechanism of
diabetic β cell failure. Cell. 150:1223–1234. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Z, York NW, Nichols CG and Remedi MS:
Pancreatic β cell dedifferentiation in diabetes and
redifferentiation following insulin therapy. Cell Metab.
19:872–882. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tortosa F and Dotta F: Incretin hormones
and beta-cell mass expansion: What we know and what is missing?
Arch Physiol Biochem. 119:161–169. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Evans JL, Goldfine ID, Maddux BA and
Grodsky GM: Oxidative stress and stress-activated signaling
pathways: A unifying hypothesis of type 2 diabetes. Endocr Rev.
23:599–622. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yuzefovych LV, LeDoux SP, Wilson GL and
Rachek LI: Mitochondrial DNA damage via augmented oxidative stress
regulates endoplasmic reticulum stress and autophagy: Crosstalk,
links and signaling. PLoS One. 8:e833492013. View Article : Google Scholar :
|
39
|
Gehrmann W, Elsner M and Lenzen S: Role of
metabolically generated reactive oxygen species for lipotoxicity in
pancreatic β-cells. Diabetes Obes Metab. 12(Suppl 2): 149–158.
2010. View Article : Google Scholar
|
40
|
Erdogdu O, Eriksson L, Xu H, Sjöholm A,
Zhang Q and Nyström T: Exendin-4 protects endothelial cells from
lipo-apoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J
Mol Endocrinol. 50:229–241. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jin L, Lim SW, Doh KC, Piao SG, Jin J, Heo
SB, Chung BH and Yang CW: Dipeptidyl peptidase IV inhibitor MK-0626
attenuates pancreatic islet injury in tacrolimus-induced diabetic
rats. PLoS One. 9:e1007982014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tomas E, Stanojevic V and Habener JF:
GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria
and suppresses glucose production and oxidative stress in isolated
mouse hepatocytes. Regul Pept. 167:177–184. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu Z, Stanojevic V, Brindamour LJ and
Habener JF: GLP1-derived nonapeptide GLP1(28-36)amide protects
pancreatic β-cells from glucolipotoxicity. J Endocrinol.
213:143–154. 2012. View Article : Google Scholar : PubMed/NCBI
|