1
|
Pestka S, Krause CD and Walter MR:
Interferons, interferon-like cytokines, and their receptors.
Immunol Rev. 202:8–32. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Levy DE and García-Sastre A: The virus
battles: IFN induction of the antiviral state and mechanisms of
viral evasion. Cytokine Growth Factor Rev. 12:143–156. 2001.
View Article : Google Scholar : PubMed/NCBI
|
3
|
González-Navajas JM, Lee J, David M and
Raz E: Immunomodulatory functions of type I interferons. Nat Rev
Immunol. 12:125–135. 2012.PubMed/NCBI
|
4
|
Kadowaki N, Antonenko S, Lau JY and Liu
YJ: Natural interferon alpha/beta-producing cells link innate and
adaptive immunity. J Exp Med. 192:219–226. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Taniguchi T, Mantei N, Schwarzstein M, et
al: Human leukocyte and fibroblast interferons are structurally
related. Nature. 285:547–549. 1980. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Shuai K and Liu B: Regulation of JAK-STAT
signalling in the immune system. Nat Rev Immunol. 3:900–911. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Barber GN: Host defense, viruses and
apoptosis. Cell Death Differ. 8:113–126. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jarvis ED, Mirarab S, Aberer AJ, Li B,
Houde P, Li C, Ho SY, Faircloth BC, Nabholz B, Howard JT, et al:
Whole-genome analyses resolve early branches in the tree of life of
modern birds. Science. 346:1320–1331. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Alexander DJ: Newcastle Disease. Kluwer
Academic Publishers; Boston, MA: 1988, View Article : Google Scholar
|
10
|
Schirrmacher V and Fournier P: Newcastle
disease virus: A promising vector for viral therapy, immune
therapy, and gene therapy of cancer (Review). Methods Mol Biol.
542:565–605. 2009. View Article : Google Scholar
|
11
|
Fournier P and Schirrmacher V: Oncolytic
Newcastle Disease Virus as cutting edge between tumor and host.
Biology (Basel). 2:936–975. 2013.
|
12
|
Hanson RP and Brandly CA: Identification
of vaccine strains of Newcastle disease virus. Science.
122:156–157. 1955.PubMed/NCBI
|
13
|
Mebatsion T, de Vaan LT, de Haas N,
Römer-Oberdörfer A and Braber M: Identification of a mutation in
editing of defective Newcastle disease virus recombinants that
modulates P-gene mRNA editing and restores virus replication and
pathogenicity in chicken embryos. J Virol. 77:9259–9265. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang Z, Krishnamurthy S, Panda A and
Samal SK: Newcastle disease virus V protein is associated with
viral pathogenesis and functions as an alpha interferon antagonist.
J Virol. 77:8676–8685. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Park MS, Shaw ML, Muñoz-Jordan J, Cros JF,
Nakaya T, Bouvier N, Palese P, García-Sastre A and Basler CF:
Newcastle disease virus (NDV)-based assay demonstrates
interferon-antagonist activity for the NDV V protein and the Nipah
virus V, W, and C proteins. J Virol. 77:1501–1511. 2003. View Article : Google Scholar :
|
16
|
Park MS, García-Sastre A, Cros JF, Basler
CF and Palese P: Newcastle disease virus V protein is a determinant
of host range restriction. J Virol. 77:9522–9532. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Horvath CM: Weapons of STAT destruction.
Interferon evasion by paramyxovirus V protein. Eur J Biochem.
271:4621–4628. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hengel H, Koszinowski UH and Conzelmann
KK: Viruses know it all: new insights into IFN networks. Trends
Immunol. 26:396–401. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zaslavsky E, Hershberg U, Seto J, Pham AM,
Marquez S, Duke JL, Wetmur JG, Tenoever BR, Sealfon SC and
Kleinstein SH: Antiviral response dictated by choreographed cascade
of transcription factors. J Immunol. 184:2908–2917. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wilden H, Fournier P, Zawatzky R and
Schirrmacher V: Expression of RIG-I, IRF3, IFN-beta and IRF7
determines resistance or susceptibility of cells to infection by
Newcastle Disease Virus. Int J Oncol. 34:971–982. 2009.PubMed/NCBI
|
21
|
Fournier P, Wilden H and Schirrmacher V:
Importance of retinoic acid-inducible gene I and of receptor for
type I interferon for cellular resistance to infection by Newcastle
disease virus. Int J Oncol. 40:287–298. 2012.
|
22
|
Hornung V, Ellegast J, Kim S, Brzózka K,
Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, et al:
5′-Triphosphate RNA is the ligand for RIG-I. Science. 314:994–997.
2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Taniguchi T and Takaoka A: The
interferon-alpha/beta system in antiviral responses: A multimodal
machinery of gene regulation by the IRF family of transcription
factors. Curr Opin Immunol. 14:111–116. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wilden H, Schirrmacher V and Fournier P:
Important role of interferon regulatory factor (IRF)-3 in the
interferon response of mouse macrophages upon infection by
Newcastle disease virus. Int J Oncol. 39:493–504. 2011.PubMed/NCBI
|
25
|
Goubau D, Schlee M, Deddouche S,
Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen
AG, Fujimura T, Rehwinkel J, et al: Antiviral immunity via
RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature.
514:372–375. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang X, Li S, Luo Y, Chen Y, Cheng S,
Zhang G, Hu C, Chen H and Guo A: Mycobacterium bovis and BCG induce
different patterns of cytokine and chemokine production in
dendritic cells and differentiation patterns in CD4+ T
cells. Microbiology. 159:366–379. 2013. View Article : Google Scholar
|
27
|
Grandvaux N, Servant MJ, tenOever B, Sen
GC, Balachandran S, Barber GN, Lin R and Hiscott J: Transcriptional
profiling of interferon regulatory factor 3 target genes: direct
involvement in the regulation of interferon-stimulated genes. J
Virol. 76:5532–5539. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sen GC and Peters GA: Viral
stress-inducible genes. Adv Virus Res. 70:233–263. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tailor P, Tamura T and Ozato K: IRF family
proteins and type I interferon induction in dendritic cells. Cell
Res. 16:134–140. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ivashkiv LB and Donlin LT: Regulation of
type I interferon responses. Nat Rev Immunol. 14:36–49. 2014.
View Article : Google Scholar :
|
31
|
Parks GD and Alexander-Miller MA:
Paramyxovirus activation and inhibition of innate immune responses.
J Mol Biol. 425:4872–4892. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fournier P, Arnold A, Wilden H and
Schirrmacher V: Newcastle disease virus induces pro-inflammatory
conditions and type I interferon for counter-acting Treg activity.
Int J Oncol. 40:840–850. 2012.
|
33
|
Fournier P, Arnold A and Schirrmacher V:
Polarization of human monocyte-derived dendritic cells to DC1 by in
vitro stimulation with Newcastle Disease Virus. J BUON. 14(Suppl):
S111–S122. 2009.
|
34
|
Weber F, Kochs G and Haller O: Inverse
interference: how viruses fight the interferon system. Viral
Immunol. 17:498–515. 2004. View Article : Google Scholar
|
35
|
Jenner RG and Young RA: Insights into host
responses against pathogens from transcriptional profiling. Nat Rev
Microbiol. 3:281–294. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Huang Q, Liu D, Majewski P, Schulte LC,
Korn JM, Young RA, Lander ES and Hacohen N: The plasticity of
dendritic cell responses to pathogens and their components.
Science. 294:870–875. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fiola C, Peeters B, Fournier P, Arnold A,
Bucur M and Schirrmacher V: Tumor selective replication of
Newcastle disease virus: Association with defects of tumor cells in
antiviral defence. Int J Cancer. 119:328–338. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jarahian M, Watzl C, Fournier P, Arnold A,
Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V and
Momburg F: Activation of natural killer cells by newcastle disease
virus hemagglutinin-neuraminidase. J Virol. 83:8108–8121. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Washburn B, Weigand MA, Grosse-Wilde A,
Janke M, Stahl H, Rieser E, Sprick MR, Schirrmacher V and Walczak
H: TNF-related apoptosis-inducing ligand mediates tumoricidal
activity of human monocytes stimulated by Newcastle disease virus.
J Immunol. 170:1814–1821. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Termeer CC, Schirrmacher V, Bröcker EB and
Becker JC: Newcastle disease virus infection induces
B7-1/B7-2-independent T-cell costimulatory activity in human
melanoma cells. Cancer Gene Ther. 7:316–323. 2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ertel C, Millar NS, Emmerson PT,
Schirrmacher V and von Hoegen P: Viral hemagglutinin augments
peptide-specific cytotoxic T cell responses. Eur J Immunol.
23:2592–2596. 1993. View Article : Google Scholar : PubMed/NCBI
|
42
|
Umansky V, Shatrov VA, Lehmann V and
Schirrmacher V: Induction of NO synthesis in macrophages by
Newcastle disease virus is associated with activation of nuclear
factor-kappa B. Int Immunol. 8:491–498. 1996. View Article : Google Scholar : PubMed/NCBI
|
43
|
Klenk HD: Marburg and Ebola Viruses.
Current Topics in Microbiol and Immunol 235. Springer; 1999
|
44
|
Bray M and Geisbert TW: Ebola virus: The
role of macrophages and dendritic cells in the pathogenesis of
Ebola hemorrhagic fever. Int J Biochem Cell Biol. 37:1560–1566.
2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
WHO Ebola Response Team: Ebola virus
disease in West Africa. New Engl J Med. 371:1481–1495. 2014.
View Article : Google Scholar
|
46
|
Zhang L, Wang H and Zhang YQ: Against
Ebola: Type I interferon guard risk and mesenchymal stromal cell
combat sepsis. J Zhejiang Univ Sci B. 16:1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ramanan P, Shabman RS, Brown CS,
Amarasinghe GK, Basler CF and Leung DW: Filoviral immune evasion
mechanisms. Viruses. 3:1634–1649. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Leung DW, Ginder ND, Fulton DB, Nix J,
Basler CF, Honzatko RB and Amarasinghe GK: Structure of the Ebola
VP35 interferon inhibitory domain. Proc Natl Acad Sci USA.
106:411–416. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Xu W, Edwards MR, Borek DM, Feagins AR,
Mittal A, Alinger JB, Berry KN, Yen B, Hamilton J, Brett TJ, et al:
Ebola virus VP24 targets a unique NLS binding site on karyopherin
alpha 5 to selectively compete with nuclear import of
phosphorylated STAT1. Cell Host Microbe. 16:187–200. 2014.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Bale S, Julien JP, Bornholdt ZA, Kimberlin
CR, Halfmann P, Zandonatti MA, Kunert J, Kroon GJ, Kawaoka Y,
MacRae IJ, et al: Marburg virus VP35 can both fully coat the
backbone and cap the ends of dsRNA for interferon antagonism. PLoS
Pathog. 8:e10029162012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Leung DW, Prins KC, Borek DM, Farahbakhsh
M, Tufariello JM, Ramanan P, Nix JC, Helgeson LA, Otwinowski Z,
Honzatko RB, et al: Structural basis for dsRNA recognition and
interferon antagonism by Ebola VP35. Nat Struct Mol Biol.
17:165–172. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Basler CF, Mikulasova A, Martinez-Sobrido
L, Paragas J, Mühlberger E, Bray M, Klenk HD, Palese P and
García-Sastre A: The Ebola virus VP35 protein inhibits activation
of interferon regulatory factor 3. J Virol. 77:7945–7956. 2003.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Feng Z, Cerveny M, Yan Z and He B: The
VP35 protein of Ebola virus inhibits the antiviral effect mediated
by double-stranded RNA-dependent protein kinase PKR. J Virol.
81:182–192. 2007. View Article : Google Scholar :
|
54
|
Hartman AL, Ling L, Nichol ST and Hibberd
ML: Whole-genome expression profiling reveals that inhibition of
host innate immune response pathways by Ebola virus can be reversed
by a single amino acid change in the VP35 protein. J Virol.
82:5348–5358. 2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang AP, Bornholdt ZA, Liu T, Abelson DM,
Lee DE, Li S, Woods VL Jr and Saphire EO: The ebola virus
interferon antagonist VP24 directly binds STAT1 and has a novel,
pyramidal fold. PLoS Pathog. 8:e10025502012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kulkarni RR, Rasheed MA, Bhaumik SK,
Ranjan P, Cao W, Davis C, Marisetti K, Thomas S, Gangappa S,
Sambhara S, et al: Activation of the RIG-I pathway during influenza
vaccination enhances the germinal center reaction, promotes T
follicular helper cell induction, and provides a dose-sparing
effect and protective immunity. J Virol. 88:13990–14001. 2014.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Cervantes-Barragán L, Kalinke U, Züst R,
König M, Reizis B, López-Macías C, Thiel V and Ludewig B: Type I
IFN-mediated protection of macrophages and dendritic cells secures
control of murine coronavirus infection. J Immunol. 182:1099–1106.
2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Ayllon J and García-Sastre A: The NS1
protein: A multitasking virulence factor. Curr Top Microbiol
Immunol. 386:73–107. 2015.
|
59
|
Reder AT, Oger JF, Kappos L, O’Connor P
and Rametta M: Short-term and long-term safety and tolerability of
interferon β-1b in multiple sclerosis. Mult Scler Relat Disord.
3:294–302. 2014. View Article : Google Scholar
|
60
|
Corti D and Lanzavecchia A: Broadly
neutralizing antiviral antibodies. Annu Rev Immunol. 31:705–742.
2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Corti D, Sallusto F and Lanzavecchia A:
High throughput cellular screens to interrogate the human T and B
cell repertoires. Curr Opin Immunol. 23:430–435. 2011. View Article : Google Scholar : PubMed/NCBI
|
62
|
Sobarzo A, Eskira Y, Herbert AS, Kuehne
AI, Stonier SW, Ochayon DE, Fedida-Metula S, Balinandi S, Kislev Y,
Tali N, et al: Immune memory to Sudan virus: Comparison between two
separate disease outbreaks. Viruses. 7:37–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
63
|
Marzi A, Engelmann F, Feldmann F,
Haberthur K, Shupert WL, Brining D, Scott DP, Geisbert TW, Kawaoka
Y, Katze MG, et al: Antibodies are necessary for
rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus
challenge in nonhuman primates. Proc Natl Acad Sci USA.
110:1893–1898. 2013. View Article : Google Scholar : PubMed/NCBI
|
64
|
Barber GN: VSV-tumor selective replication
and protein translation. Oncogene. 24:7710–7719. 2005. View Article : Google Scholar : PubMed/NCBI
|