1
|
Lee RC and Ambros V: An extensive class of
small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ketting RF, Fischer SE, Bernstein E, Sijen
T, Hannon GJ and Plasterk RH: Dicer functions in RNA interference
and in synthesis of small RNA involved in developmental timing in
C. elegans. Genes Dev. 15:2654–2659. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J,
Lee J, Provost P, Rådmark O, Kim S, et al: The nuclear RNase III
Drosha initiates microRNA processing. Nature. 425:415–419. 2003.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Vo N, Klein ME, Varlamova O, Keller DM,
Yamamoto T, Goodman RH and Impey S: A cAMP-response element binding
protein-induced microRNA regulates neuronal morphogenesis. Proc
Natl Acad Sci USA. 102:16426–16431. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wayman GA, Davare M, Ando H, Fortin D,
Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman
RH, et al: An activity-regulated microRNA controls dendritic
plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA.
105:9093–9098. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schratt GM, Tuebing F, Nigh EA, Kane CG,
Sabatini ME, Kiebler M and Greenberg ME: A brain-specific microRNA
regulates dendritic spine development. Nature. 439:283–289. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Siegel G, Obernosterer G, Fiore R, Oehmen
M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch
CJ, Kane C, et al: A functional screen implicates
microRNA-138-dependent regulation of the depalmitoylation enzyme
APT1 in dendritic spine morphogenesis. Nat Cell Biol. 11:705–716.
2009. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Kim J, Krichevsky A, Grad Y, Hayes GD,
Kosik KS, Church GM and Ruvkun G: Identification of many microRNAs
that copurify with polyribosomes in mammalian neurons. Proc Natl
Acad Sci USA. 101:360–365. 2004. View Article : Google Scholar :
|
10
|
Kosik KS: The neuronal microRNA system.
Nat Rev Neurosci. 7:911–920. 2006. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Krichevsky AM, King KS, Donahue CP,
Khrapko K and Kosik KS: A microRNA array reveals extensive
regulation of microRNAs during brain development. RNA. 9:1274–1281.
2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Elton TS, Sansom SE and Martin MM:
Trisomy-21 gene dosage over-expression of miRNAs results in the
haploinsufficiency of specific target proteins. RNA Biol.
7:540–547. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xu Y, Li W, Liu X, Chen H, Tan K, Chen Y,
Tu Z and Dai Y: Identification of dysregulated microRNAs in
lymphocytes from children with Down syndrome. Gene. 530:278–286.
2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Klusmann JH, Li Z, Böhmer K, Maroz A, Koch
ML, Emmrich S, Godinho FJ, Orkin SH and Reinhardt D: miR-125b-2 is
a potential oncomiR on human chromosome 21 in megakaryoblastic
leukemia. Genes Dev. 24:478–490. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bian S and Sun T: Functions of noncoding
RNAs in neural development and neurological diseases. Mol
Neurobiol. 44:359–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um
M, Udolph G, Yang H, Lim B and Lodish HF: MicroRNA-125b promotes
neuronal differentiation in human cells by repressing multiple
targets. Mol Cell Biol. 29:5290–5305. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Edbauer D, Neilson JR, Foster KA, Wang CF,
Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA and Sheng M:
Regulation of synaptic structure and function by FMRP-associated
microRNAs miR-125b and miR-132. Neuron. 65:373–384. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ferretti E, De Smaele E, Miele E, Laneve
P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E,
Screpanti I, et al: Concerted microRNA control of Hedgehog
signalling in cerebellar neuronal progenitor and tumour cells. EMBO
J. 27:2616–2627. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang J, Cao N, Yuan M, Cui H, Tang Y, Qin
L, Huang X, Shen N and Yang HT: MicroRNA-125b/Lin28 pathway
contributes to the mesendodermal fate decision of embryonic stem
cells. Stem Cells Dev. 21:1524–1537. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Battista M, Musto A, Navarra A, Minopoli
G, Russo T and Parisi S: miR-125b Regulates the Early Steps of ESC
Differentiation through Dies1 in a TGF-Independent Manner. Int J
Mol Sci. 14:13482–13496. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Alexopoulou AN, Couchman JR and Whiteford
JR: The CMV early enhancer/chicken beta actin (CAG) promoter can be
used to drive transgene expression during the differentiation of
murine embryonic stem cells into vascular progenitors. BMC Cell
Biol. 9:22008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen CM, Krohn J, Bhattacharya S and
Davies B: A comparison of exogenous promoter activity at the ROSA26
locus using a ΦiC31 integrase mediated cassette exchange approach
in mouse ES cells. PLoS One. 6:e233762011. View Article : Google Scholar
|
23
|
Liew CG, Draper JS, Walsh J, Moore H and
Andrews PW: Transient and stable transgene expression in human
embryonic stem cells. Stem Cells. 25:1521–1528. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mathieu J and Ruohola-Baker H: Regulation
of stem cell populations by microRNAs. Adv Exp Med Biol.
786:329–351. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sasaki N, Okishio K, Ui-Tei K, Saigo K,
Kinoshita-Toyoda A, Toyoda H, Nishimura T, Suda Y, Hayasaka M,
Hanaoka K, et al: Heparan sulfate regulates self-renewal and
pluripotency of embryonic stem cells. J Biol Chem. 283:3594–3606.
2008. View Article : Google Scholar
|
26
|
Li J, Bei Y, Liu Q, Lv D, Xu T, He Y, Chen
P and Xiao J: MicroRNA-221 is required for proliferation of mouse
embryonic stem cells via P57 targeting. Stem Cell Rev. 11:39–49.
2015. View Article : Google Scholar
|
27
|
Wan Y, Sun G, Wang Z, Guo J and Shi L:
miR-125b promotes cell proliferation by directly targeting Lin28 in
glioblastoma stem cells with low expression levels of miR-125b.
Neuroreport. 25:289–296. 2014.
|
28
|
Wobus AM, Guan K, Yang HT and Boheler KR:
Embryonic stem cells as a model to study cardiac, skeletal muscle,
and vascular smooth muscle cell differentiation. Methods Mol Biol.
185:127–156. 2002.PubMed/NCBI
|
29
|
Hwang JT and Kelly GM: GATA6 and FOXA2
regulate Wnt6 expression during extraembryonic endoderm formation.
Stem Cells Dev. 21:3220–3232. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Roche E, Sepulcre P, Reig JA, Santana A
and Soria B: Ectodermal commitment of insulin-producing cells
derived from mouse embryonic stem cells. FASEB J. 19:1341–1343.
2005.PubMed/NCBI
|
31
|
Lobo MV, Arenas MI, Alonso FJ, Gomez G,
Bazán E, Paíno CL, Fernández E, Fraile B, Paniagua R, Moyano A, et
al: Nestin, a neuroectodermal stem cell marker molecule, is
expressed in Leydig cells of the human testis and in some specific
cell types from human testicular tumours. Cell Tissue Res.
316:369–376. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rosa A, Spagnoli FM and Brivanlou AH: The
miR-430/427/302 family controls mesendodermal fate specification
via species-specific target selection. Dev Cell. 16:517–527. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Li L, Liu C, Biechele S, Zhu Q, Song L,
Lanner F, Jing N and Rossant J: Location of transient ectodermal
progenitor potential in mouse development. Development.
140:4533–4543. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Addae C, Yi X, Gernapudi R, Cheng H, Musto
A and Martinez-Ceballos E: All-trans-retinoid acid induces the
differentiation of encapsulated mouse embryonic stem cells into
GABAergic neurons. Differentiation. 83:233–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xu J, Wang H, Liang T, Cai X, Rao X, Huang
Z and Sheng G: Retinoic acid promotes neural conversion of mouse
embryonic stem cells in adherent monoculture. Mol Biol Rep.
39:789–795. 2012. View Article : Google Scholar
|
36
|
Tarantino C, Paolella G, Cozzuto L,
Minopoli G, Pastore L, Parisi S and Russo T: miRNA 34a, 100, and
137 modulate differentiation of mouse embryonic stem cells. FASEB
J. 24:3255–3263. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Solozobova V and Blattner C: Regulation of
p53 in embryonic stem cells. Exp Cell Res. 316:2434–2446. 2010.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Gaulden J and Reiter JF: Neur-ons and
neur-offs: regulators of neural induction in vertebrate embryos and
embryonic stem cells. Hum Mol Genet. 17:R60–R66. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Berardi E, Pues M, Thorrez L and
Sampaolesi M: miRNAs in ESC differentiation. Am J Physiol Heart
Circ Physiol. 303:H931–H939. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tiscornia G and Izpisúa Belmonte JC:
MicroRNAs in embryonic stem cell function and fate. Genes Dev.
24:2732–2741. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wells JM and Melton DA: Vertebrate
endoderm development. Annu Rev Cell Dev Biol. 15:393–410. 1999.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Boissart C, Nissan X, Giraud-Triboult K,
Peschanski M and Benchoua A: miR-125 potentiates early neural
specification of human embryonic stem cells. Development.
139:1247–1257. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wu L and Belasco JG: Micro-RNA regulation
of the mammalian lin-28 gene during neuronal differentiation of
embryonal carcinoma cells. Mol Cell Biol. 25:9198–9208. 2005.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Parisi S, Battista M, Musto A, Navarra A,
Tarantino C and Russo T: A regulatory loop involving Dies1 and
miR-125a controls BMP4 signaling in mouse embryonic stem cells.
FASEB J. 26:3957–3968. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sun YM, Lin KY and Chen YQ: Diverse
functions of miR-125 family in different cell contexts. J Hematol
Oncol. 6:62013. View Article : Google Scholar : PubMed/NCBI
|