1
|
Andersen ME, Butenhoff JL, Chang SC,
Farrar DG, Kennedy GL Jr, Lau C, Olsen GW, Seed J and Wallace KB:
Perfluoroalkyl acids and related chemistries - toxicokinetics and
modes of action. Toxicol Sci. 102:3–14. 2008. View Article : Google Scholar
|
2
|
Houde M, Martin JW, Letcher RJ, Solomon KR
and Muir DC: Biological monitoring of polyfluoroalkyl substances: A
review. Environ Sci Technol. 40:3463–3473. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Calafat AM, Wong LY, Kuklenyik Z, Reidy JA
and Needham LL: Polyfluoroalkyl chemicals in the U.S. population:
Data from the National Health and Nutrition Examination Survey
(NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ
Health Perspect. 115:1596–1602. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lindstrom AB, Strynar MJ and Libelo EL:
Polyfluorinated compounds: Past, present, and future. Environ Sci
Technol. 45:7954–7961. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nelson JW, Hatch EE and Webster TF:
Exposure to polyfluoroalkyl chemicals and cholesterol, body weight,
and insulin resistance in the general U.S. population. Environ
Health Perspect. 118:197–202. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yamashita N, Kannan K, Taniyasu S, Horii
Y, Petrick G and Gamo T: A global survey of perfluorinated acids in
oceans. Mar Pollut Bull. 51:658–668. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
McLachlan MS, Holmstrom KE, Reth M and
Berger U: Riverine discharge of perfluorinated carboxylates from
the European continent. Environ Sci Technol. 41:7260–7265. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Jin YH, Liu W, Sato I, Nakayama SF, Sasaki
K, Saito N and Tsuda S: PFOS and PFOA in environmental and tap
water in China. Chemosphere. 77:605–611. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nakayama S, Strynar MJ, Helfant L, Egeghy
P, Ye X and Lindstrom AB: Perfluorinated compounds in the Cape Fear
Drainage Basin in North Carolina. Environ Sci Technol.
41:5271–5276. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Domingo JL: Health risks of dietary
exposure to perfluorinated compounds. Environ Int. 40:187–195.
2012. View Article : Google Scholar
|
11
|
Moody CA, Martin JW, Kwan WC, Muir DC and
Mabury SA: Monitoring perfluorinated surfactants in biota and
surface water samples following an accidental release of
fire-fighting foam into Etobicoke Creek. Environ Sci Technol.
36:545–551. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Olsen GW, Butenhoff JL and Zobel LR:
Perfluoroalkyl chemicals and human fetal development: An
epidemiologic review with clinical and toxicological perspectives.
Reprod Toxicol. 27:212–230. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dreyer A, Weinberg I, Temme C and
Ebinghaus R: Polyfluorinated compounds in the atmosphere of the
Atlantic and Southern Oceans: Evidence for a global distribution.
Environ Sci Technol. 43:6507–6514. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lau C, Anitole K, Hodes C, Lai D,
Pfahles-Hutchens A and Seed J: Perfluoroalkyl acids: A review of
monitoring and toxicological findings. Toxicol Sci. 99:366–394.
2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kato K, Wong LY, Jia LT, Kuklenyik Z and
Calafat AM: Trends in exposure to polyfluoroalkyl chemicals in the
U.S. Population: 1999–2008. Environ Sci Technol. 45:8037–8045.
2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim M, Son J, Park MS, Ji Y, Chae S, Jun
C, Bae JS, Kwon TK, Choo YS, Yoon H, et al: In vivo evaluation and
comparison of developmental toxicity and teratogenicity of
perfluoroalkyl compounds using Xenopus embryos. Chemosphere.
93:1153–1160. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mouche I, Malesic L and Gillardeaux O:
FETAX assay for evaluation of developmental toxicity. Methods Mol
Biol. 691:257–269. 2011. View Article : Google Scholar
|
18
|
Sharma B and Patiño R: Exposure of Xenopus
laevis tadpoles to cadmium reveals concentration-dependent bimodal
effects on growth and monotonic effects on development and thyroid
gland activity. Toxicol Sci. 105:51–58. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bacchetta R, Santo N, Fascio U, Moschini
E, Freddi S, Chirico G, Camatini M and Mantecca P: Nano-sized CuO,
TiO2 and ZnO affect Xenopus laevis development.
Nanotoxicology. 6:381–398. 2012. View Article : Google Scholar
|
20
|
Vize PD, McCoy KE and Zhou X: Multichannel
wholemount fluorescent and fluorescent/chromogenic in situ
hybridization in Xenopus embryos. Nat Protoc. 4:975–983. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou Y, Zhang J and King ML: Xenopus
autosomal recessive hypercholesterolemia protein couples
lipoprotein receptors with the AP-2 complex in oocytes and embryos
and is required for vitellogenesis. J Biol Chem. 278:44584–44592.
2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jahr M and Männer J: Development of the
venous pole of the heart in the frog Xenopus laevis: A
morphological study with special focus on the development of the
venoatrial connections. Dev Dyn. 240:1518–1527. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ruch RJ: Intercellular communication,
homeostasis, and toxicology. Toxicol Sci. 68:265–266. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng Y, Cui Y, Chen HM and Xie WP:
Thyroid disruption effects of environmental level perfluorooctane
sulfonates (PFOS) in Xenopus laevis. Ecotoxicology. 20:2069–2078.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ny A, Koch M, Schneider M, Neven E, Tong
RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Héligon C, et
al: A genetic Xenopus laevis tadpole model to study
lymphangiogenesis. Nat Med. 11:998–1004. 2005.PubMed/NCBI
|
26
|
Kälin RE, Bänziger-Tobler NE, Detmar M and
Brändli AW: An in vivo chemical library screen in Xenopus tadpoles
reveals novel pathways involved in angiogenesis and
lymphangiogenesis. Blood. 114:1110–1122. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Raffin M, Leong LM, Rones MS, Sparrow D,
Mohun T and Mercola M: Subdivision of the cardiac Nkx2.5 expression
domain into myogenic and nonmyogenic compartments. Dev Biol.
218:326–340. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Son HY, Lee S, Tak EN, Cho HS, Shin HI,
Kim SH and Yang JH: Perfluorooctanoic acid alters T lymphocyte
phenotypes and cytokine expression in mice. Environ Toxicol.
24:580–588. 2009. View Article : Google Scholar
|
29
|
Van den Heuvel LP, Van den Born J, Jalanko
H, Schröder CH, Veerkamp JH, Assmann KJ, Berden JH, Holmberg C,
Rapola J and Monnens LA: The glycosaminoglycan content of renal
basement membranes in the congenital nephrotic syndrome of the
Finnish type. Pediatr Nephrol. 6:10–15. 1992. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yeung LW, Yamashita N, Taniyasu S, Lam PK,
Sinha RK, Borole DV and Kannan K: A survey of perfluorinated
compounds in surface water and biota including dolphins from the
Ganges River and in other waterbodies in India. Chemosphere.
76:55–62. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shi X, Du Y, Lam PK, Wu RS and Zhou B:
Developmental toxicity and alteration of gene expression in
zebrafish embryos exposed to PFOS. Toxicol Appl Pharmacol.
230:23–32. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Abbott BD, Wolf CJ, Schmid JE, Das KP,
Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ and Lau C:
Perfluorooctanoic acid induced developmental toxicity in the mouse
is dependent on expression of peroxisome proliferator activated
receptor-alpha. Toxicol Sci. 98:571–581. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
O'Brien JM, Crump D, Mundy LJ, Chu S,
McLaren KK, Vongphachan V, Letcher RJ and Kennedy SW: Pipping
success and liver mRNA expression in chicken embryos exposed in ovo
to C8 and C11 perfluorinated carboxylic acids and C10
perfluorinated sulfonate. Toxicol Lett. 190:134–139. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Verreault J, Houde M, Gabrielsen GW,
Berger U, Haukås M, Letcher RJ and Muir DC: Perfluorinated alkyl
substances in plasma, liver, brain, and eggs of glaucous gulls
(Larus hyper-boreus) from the Norwegian arctic. Environ Sci
Technol. 39:7439–7445. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Conder JM, Hoke RA, De Wolf W, Russell MH
and Buck RC: Are PFCAs bioaccumulative? A critical review and
comparison with regulatory criteria and persistent lipophilic
compounds. Environ Sci Technol. 42:995–1003. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Garuti R, Jones C, Li WP, Michaely P, Herz
J, Gerard RD, Cohen JC and Hobbs HH: The modular adaptor protein
autosomal recessive hypercholesterolemia (ARH) promotes low density
lipoprotein receptor clustering into clathrin-coated pits. J Biol
Chem. 280:40996–41004. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Goldstein JL and Brown MS: Molecular
medicine. The cholesterol quartet. Science. 292:1310–1312. 2001.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang Q, Fang C, Wu X, Fan J and Dong S:
Perfluorooctane sulfonate impairs the cardiac development of a
marine medaka (Oryzias melastigma). Aquat Toxicol. 105:71–77. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Jiang Q, Lust RM, Strynar MJ, Dagnino S
and DeWitt JC: Perflurooctanoic acid induces developmental
cardiotoxicity in chicken embryos and hatchlings. Toxicology.
293:97–106. 2012. View Article : Google Scholar : PubMed/NCBI
|