1
|
Hadjipavlou AG, Tzermiadianos MN, Bogduk N
and Zindrick MR: The pathophysiology of disc degeneration: A
critical review. J Bone Joint Surg Br. 90:1261–1270. 2008.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang SZ, Rui YF, Tan Q and Wang C:
Enhancing intervertebral disc repair and regeneration through
biology: Platelet-rich plasma as an alternative strategy. Arthritis
Res Ther. 15:2202013. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Yorimitsu E, Chiba K, Toyama Y and
Hirabayashi K: Long-term outcomes of standard discectomy for lumbar
disc herniation: A follow-up study of more than 10 years. Spine.
26:652–657. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Karasek M and Bogduk N: Twelve-month
follow-up of a controlled trial of intradiscal thermal anuloplasty
for back pain due to internal disc disruption. Spine. 25:2601–2607.
2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Anderson PA and Rouleau JP: Intervertebral
disc arthroplasty. Spine. 29:2779–2786. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shimer AL, Chadderdon RC, Gilbertson LG
and Kang JD: Gene therapy approaches for intervertebral disc
degeneration. Spine. 29:2770–2778. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Choi YS: Pathophysiology of degenerative
disc disease. Asian Spine J. 3:39–44. 2009. View Article : Google Scholar
|
8
|
Tang Y, Wang S, Liu Y and Wang X:
Microarray analysis of genes and gene functions in disc
degeneration. Exp Ther Med. 7:343–348. 2014.PubMed/NCBI
|
9
|
Antoniou J, Epure LM, Michalek AJ, Grant
MP, Iatridis JC and Mwale F: Analysis of quantitative magnetic
resonance imaging and biomechanical parameters on human discs with
different grades of degeneration. J Magn Reson Imaging.
38:1402–1414. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Thompson JP, Pearce RH, Schechter MT,
Adams ME, Tsang IK and Bishop PB: Preliminary evaluation of a
scheme for grading the gross morphology of the human intervertebral
disc. Spine. 15:411–415. 1990. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pfirrmann CW, Metzdorf A, Zanetti M,
Hodler J and Boos N: Magnetic resonance classification of lumbar
intervertebral disc degeneration. Spine. 26:1873–1878. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Adams MA and Roughley PJ: What is
intervertebral disc degeneration, and what causes it? Spine.
31:2151–2161. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bachmeier BE, Nerlich A, Mittermaier N,
Weiler C, Lumenta C, Wuertz K and Boos N: Matrix metalloproteinase
expression levels suggest distinct enzyme roles during lumbar disc
herniation and degeneration. Eur Spine J. 18:1573–1586. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Takahashi M, Haro H, Wakabayashi Y,
Kawauchi T, Komori H and Shinomiya K: The association of
degeneration of the inter-vertebral disc with 5a/6a polymorphism in
the promoter of the human matrix metalloproteinase-3 gene. J Bone
Joint Surg Br. 83:491–495. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pratsinis H and Kletsas D: PDGF, bFGF and
IGF-I stimulate the proliferation of intervertebral disc cells in
vitro via the activation of the ERK and Akt signaling pathways. Eur
Spine J. 16:1858–1866. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
van Rooij E and Kauppinen S: Development
of microRNA therapeutics is coming of age. EMBO Mol Med. 6:851–864.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X
and Qiu G: MicroRNA-10b promotes nucleus pulposus cell
proliferation through RhoC-Akt pathway by targeting HOXD10 in
intervetebral disc degeneration. PLoS One. 8:e830802013. View Article : Google Scholar :
|
18
|
Chen Y, Chen K, Li M, Li C, Ma H, Bai YS,
Zhu XD and Fu Q: Genes associated with disc degeneration identified
using microarray gene expression profiling and bioinformatics
analysis. Genet Mol Res. 12:1431–1439. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis
D, Jia LT, Wu SX, Huang J, Chen J and Luo ZJ: Deregulated miR-155
promotes Fas-mediated apoptosis in human intervertebral disc
degeneration by targeting FADD and caspase-3. J Pathol.
225:232–242. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gruber HE, Hoelscher G, Loeffler B, Chow
Y, Ingram JA, Halligan W and Hanley EN Jr: Prostaglandin E1 and
misoprostol increase epidermal growth factor production in
3D-cultured human annulus cells. Spine J. 9:760–766. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Tsai TT, Lai PL, Liao JC, Fu TS, Niu CC,
Chen LH, Lee MS, Chen WJ, Fang HC, Ho NY, et al: Increased
periostin gene expression in degenerative intervertebral disc
cells. Spine J. 13:289–298. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gentleman R, Carey VJ, Huber W, Irizarry
RA and Dudoit S: Bioinformatics and computational biology solutions
using R and Bioconductor. Springer; 2005, View Article : Google Scholar
|
23
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J R Stat Soc B. 57:289–300. 1995.
|
24
|
Xiao F, Zuo Z, Cai G, Kang S, Gao X and Li
T: miRecords: An integrated resource for microRNA-target
interactions. Nucleic Acids Res. 37:D105–D110. 2009. View Article : Google Scholar
|
25
|
Hsu SD, Lin FM, Wu WY, Liang C, Huang WC,
Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, et al: miRTarBase: A
database curates experimentally validated microRNA-target
interactions. Nucleic Acids Res. 39:D163–D169. 2011. View Article : Google Scholar
|
26
|
Vergoulis T, Vlachos IS, Alexiou P,
Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N,
Dalamagas T and Hatzigeorgiou AG: TarBase 6.0: Capturing the
exponential growth of miRNA targets with experimental support.
Nucleic Acids Res. 40:D222–D229. 2012. View Article : Google Scholar :
|
27
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar
|
28
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar :
|
29
|
Franceschini A, Szklarczyk D, Frankild S,
Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering
C, et al: STRING v9.1: Protein-protein interaction networks, with
increased coverage and integration. Nucleic Acids Res.
41:D808–D815. 2013. View Article : Google Scholar :
|
30
|
Assenov Y, Ramírez F, Schelhorn S-E,
Lengauer T and Albrecht M: Computing topological parameters of
biological networks. Bioinformatics. 24:282–284. 2008. View Article : Google Scholar
|
31
|
Huang Y, Pepe MS and Feng Z: Logistic
regression analysis with standardized markers. Ann Appl Stat.
7:72013. View Article : Google Scholar
|
32
|
Sherman BT, Huang da W, Tan Q, Guo Y, Bour
S, Liu D, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID
Knowledgebase: A gene-centered database integrating heterogeneous
gene annotation resources to facilitate high-throughput gene
functional analysis. BMC Bioinformatics. 8:4262007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Blevins L and McDonald C: Fisher's Exact
Test: an easy-to-use statistical test for comparing outcomes. MD
Comput. 2:151985.PubMed/NCBI
|
34
|
Estrada E and Higham DJ: Network
properties revealed through matrix functions. SIAM Rev. 52:696–714.
2010. View Article : Google Scholar
|
35
|
Estrada E: Virtual identification of
essential proteins within the protein interaction network of yeast.
Proteomics. 6:35–40. 2006. View Article : Google Scholar
|
36
|
Tailor A, Jurkovic D, Bourne TH, Collins
WP and Campbell S: Sonographic prediction of malignancy in adnexal
masses using multivariate logistic regression analysis. Ultrasound
Obstet Gynecol. 10:41–47. 1997. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dumont P, Leu JI, Della Pietra AC III,
George DL and Murphy M: The codon 72 polymorphic variants of p53
have markedly different apoptotic potential. Nat Genet. 33:357–365.
2003. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Vaghefi H and Neet KE: Deacetylation of
p53 after nerve growth factor treatment in PC12 cells as a
post-translational modification mechanism of neurotrophin-induced
tumor suppressor activation. Oncogene. 23:8078–8087. 2004.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Richardson SM, Doyle P, Minogue BM,
Gnanalingham K and Hoyland JA: Increased expression of matrix
metallopro-teinase-10, nerve growth factor and substance P in the
painful degenerate intervertebral disc. Arthritis Res Ther.
11:R1262009. View
Article : Google Scholar
|
40
|
Liu XW, Kang J, Fan XD and Sun LF:
Expression and significance of VEGF and p53 in rat degenerated
intervertebral disc tissues. Asian Pac J Trop Med. 6:404–406. 2013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Marinovic AC, Zheng B, Mitch WE and Price
SR: Ubiquitin (UbC) expression in muscle cells is increased by
glucocorticoids through a mechanism involving Sp1 and MEK1. J Biol
Chem. 277:16673–16681. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yew PR: Ubiquitin-mediated proteolysis of
vertebrate G1- and S-phase regulators. J Cell Physiol. 187:1–10.
2001. View Article : Google Scholar : PubMed/NCBI
|
43
|
Gruber HE, Ingram JA, Norton HJ and Hanley
EN Jr: Senescence in cells of the aging and degenerating
intervertebral disc: Immunolocalization of senescence-associated
β-galactosidase in human and sand rat discs. Spine. 32:321–327.
2007. View Article : Google Scholar
|
44
|
Kohyama K, Saura R, Doita M and Mizuno K:
Intervertebral disc cell apoptosis by nitric oxide: Biological
understanding of inter-vertebral disc degeneration. Kobe J Med Sci.
46:283–295. 2000.
|
45
|
Li M, Tian L, Wang L, Yao H, Zhang J, Lu
J, Sun Y, Gao X, Xiao H and Liu M: Down-regulation of miR-129-5p
inhibits growth and induces apoptosis in laryngeal squamous cell
carcinoma by targeting APC. PLoS One. 8:e778292013. View Article : Google Scholar : PubMed/NCBI
|