Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review)
- Authors:
- Xueyuan Li
- Xinjie Bao
- Renzhi Wang
-
Affiliations: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan, Dong Cheng, Beijing 100005, P.R. China - Published online on: December 10, 2015 https://doi.org/10.3892/ijmm.2015.2428
- Pages: 271-283
This article is mentioned in:
Abstract
Li XY, Bao XJ and Wang RZ: Potential of neural stem cell-based therapies for Alzheimer's disease. J Neurosci Res. 93:1313–1324. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al Dominantly Inherited Alzheimer Network: Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 367:795–804. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, Langbaum JB, Ayutyanont N, Roontiva A, Thiyyagura P, et al: Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study. Lancet Neurol. 11:1057–1065. 2012. View Article : Google Scholar : PubMed/NCBI | |
Do Carmo S and Cuello AC: Modeling Alzheimer's disease in transgenic rats. Mol Neurodegener. 8:372013. View Article : Google Scholar : PubMed/NCBI | |
Elder GA, Gama Sosa MA and De Gasperi R: Transgenic mouse models of Alzheimer's disease. Mt Sinai J Med. 77:69–81. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mattsson MO and Simkó M: Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology. 301:1–12. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yankner BA, Duffy LK and Kirschner DA: Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 250:279–282. 1990. View Article : Google Scholar : PubMed/NCBI | |
Itokazu Y, Kato-Negishi M, Nakatani Y, Ariga T and Yu RK: Effects of amyloid β-peptides and gangliosides on mouse neural stem cells. Neurochem Res. 38:2019–2027. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P and Grubeck-Loebenstein B: How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell. 3:169–176. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schindowski K, Bretteville A, Leroy K, Bégard S, Brion JP, Hamdane M and Buée L: Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol. 169:599–616. 2006. View Article : Google Scholar : PubMed/NCBI | |
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA and Katzman R: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 30:572–580. 1991. View Article : Google Scholar : PubMed/NCBI | |
Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C and Garrido J: Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron. 16:881–891. 1996. View Article : Google Scholar : PubMed/NCBI | |
Alvarez A, Opazo C, Alarcón R, Garrido J and Inestrosa NC: Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol. 272:348–361. 1997. View Article : Google Scholar : PubMed/NCBI | |
Alvarez A, Alarcón R, Opazo C, Campos EO, Muñoz FJ, Calderón FH, Dajas F, Gentry MK, Doctor BP, De Mello FG and Inestrosa NC: Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci. 18:3213–3223. 1998.PubMed/NCBI | |
Yamada K and Nabeshima T: Animal models of Alzheimer's disease and evaluation of anti-dementia drugs. Pharmacol Ther. 88:93–113. 2000. View Article : Google Scholar | |
Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J and Mullan M: Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature. 353:844–846. 1991. View Article : Google Scholar : PubMed/NCBI | |
Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, et al: Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature. 376:775–778. 1995. View Article : Google Scholar : PubMed/NCBI | |
Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD and Schellenberg GD: A familial Alzheimer's disease locus on chromosome 1. Science. 269:970–973. 1995. View Article : Google Scholar : PubMed/NCBI | |
Goedert M and Spillantini MG: Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer's disease. Biochim Biophys Acta. 1502:110–121. 2000. View Article : Google Scholar : PubMed/NCBI | |
Levy-Lahad E, Lahad A, Wijsman EM, Bird TD and Schellenberg GD: Apolipoprotein E genotypes and age of onset in early-onset familial Alzheimer's disease. Ann Neurol. 38:678–680. 1995. View Article : Google Scholar : PubMed/NCBI | |
Neha, Sodhi RK, Jaggi AS and Singh N: Animal models of dementia and cognitive dysfunction. Life Sci. 109:73–86. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liao A, Nitsch RM, Greenberg SM, Finckh U, Blacker D, Albert M, Rebeck GW, Gomez-Isla T, Clatworthy A, Binetti G, et al: Genetic association of an alpha2-macroglobulin (Val1000lle) polymorphism and Alzheimer's disease. Hum Mol Genet. 7:1953–1956. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dahiyat M, Cumming A, Harrington C, Wischik C, Xuereb J, Corrigan F, Breen G, Shaw D and St Clair D: Association between Alzheimer's disease and the NOS3 gene. Ann Neurol. 46:664–667. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lithner CU, Hedberg MM and Nordberg A: Transgenic mice as a model for Alzheimer's disease. Curr Alzheimer Res. 8:818–831. 2011. View Article : Google Scholar : PubMed/NCBI | |
Quon D, Wang Y, Catalano R, Scardina JM, Murakami K and Cordell B: Formation of beta-amyloid protein deposits in brains of transgenic mice. Nature. 352:239–241. 1991. View Article : Google Scholar : PubMed/NCBI | |
Higgins LS, Rodems JM, Catalano R, Quon D and Cordell B: Early Alzheimer disease-like histopathology increases in frequency with age in mice transgenic for beta-APP751. Proc Natl Acad Sci USA. 92:4402–4406. 1995. View Article : Google Scholar : PubMed/NCBI | |
Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al: Alzheimer-type neuropathology in transgenic mice overex-pressing V717F beta-amyloid precursor protein. Nature. 373:523–527. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F and Cole G: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 274:99–102. 1996. View Article : Google Scholar : PubMed/NCBI | |
Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B and Jucker M: Neuron loss in APP transgenic mice. Nature. 395:755–756. 1998. View Article : Google Scholar : PubMed/NCBI | |
Richards JG, Higgins GA, Ouagazzal AM, Ozmen L, Kew JN, Bohrmann B, Malherbe P, Brockhaus M, Loetscher H, Czech C, et al: PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. J Neurosci. 23:8989–9003. 2003.PubMed/NCBI | |
Braidy N, Muñoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC, Chung RS, Sachdev P and Guillemin GJ: Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm. 119:173–195. 2012. View Article : Google Scholar | |
Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, et al: Enhanced neuro-fibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 293:1487–1491. 2001. View Article : Google Scholar : PubMed/NCBI | |
Götz J, Probst A, Spillantini MG, Schäfer T, Jakes R, Bürki K and Goedert M: Somatodendritic localization and hyperphos-phorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J. 14:1304–1313. 1995. | |
James ND, Davis DR, Sindon J, Hanger DP, Brion JP, Miller CC, Rosenberg MP, Anderton BH and Propst F: Neurodegenerative changes including altered tau phosphorylation and neurofilament immunoreactivity in mice transgenic for the serine/threonine kinase Mos. Neurobiol Aging. 17:235–241. 1996. View Article : Google Scholar : PubMed/NCBI | |
Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, et al: Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci. 22:9340–9351. 2002.PubMed/NCBI | |
Forman MS, Lal D, Zhang B, Dabir DV, Swanson E, Lee VM and Trojanowski JQ: Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J Neurosci. 25:3539–3550. 2005. View Article : Google Scholar : PubMed/NCBI | |
Higuchi M, Zhang B, Forman MS, Yoshiyama Y, Trojanowski JQ and Lee VM: Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J Neurosci. 25:9434–9443. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ribé EM, Pérez M, Puig B, Gich I, Lim F, Cuadrado M, Sesma T, Catena S, Sánchez B, Nieto M, et al: Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis. 20:814–822. 2005. View Article : Google Scholar : PubMed/NCBI | |
Götz J, Chen F, van Dorpe J and Nitsch RM: Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 293:1491–1495. 2001. View Article : Google Scholar : PubMed/NCBI | |
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y and LaFerla FM: Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron. 39:409–421. 2003. View Article : Google Scholar : PubMed/NCBI | |
Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ and Bowers WJ: Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice. J Neuroinflammation. 2:232005. View Article : Google Scholar : PubMed/NCBI | |
Kimura R and Ohno M: Impairments in remote memory stabi-lization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis. 33:229–235. 2009. View Article : Google Scholar : | |
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, et al: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: Potential factors in amyloid plaque formation. J Neurosci. 26:10129–10140. 2006. View Article : Google Scholar : PubMed/NCBI | |
Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M and Jolkkonen J: Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci. 26:1845–1852. 2007. View Article : Google Scholar : PubMed/NCBI | |
Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Scott RW and Howland DS: A transgenic rat model of Alzheimer's disease with extracellular Abeta deposition. Neurobiol Aging. 30:1078–1090. 2009. View Article : Google Scholar | |
Ruiz-Opazo N, Kosik KS, Lopez LV, Bagamasbad P, Ponce LR and Herrera VL: Attenuated hippocampus-dependent learning and memory decline in transgenic TgAPPswe Fischer-344 rats. Mol Med. 10:36–44. 2004. View Article : Google Scholar : PubMed/NCBI | |
Filipcik P, Zilka N, Bugos O, Kucerak J, Koson P, Novak P and Novak M: First transgenic rat model developing progressive cortical neurofibrillary tangles. Neurobiol Aging. 33:1448–1456. 2012. View Article : Google Scholar | |
Van Dam D and De Deyn PP: Animal models in the drug discovery pipeline for Alzheimer's disease. Br J Pharmacol. 164:1285–1300. 2011. View Article : Google Scholar : PubMed/NCBI | |
Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y and Saido TC: Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 6:143–150. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR and Selkoe DJ: Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci. 20:1657–1665. 2000.PubMed/NCBI | |
Solà C, García-Ladona FJ, Sarasa M, Mengod G, Probst A, Palacios G and Palacios JM: Beta APP gene expression is increased in the rat brain after motor neuron axotomy. Eur J Neurosci. 5:795–808. 1993. View Article : Google Scholar : PubMed/NCBI | |
Gonzalo-Ruiz A, González I and Sanz-Anquela JM: Effects of beta-amyloid protein on serotoninergic, noradrenergic, and cholinergic markers in neurons of the pontomesencephalic tegmentum in the rat. J Chem Neuroanat. 26:153–169. 2003. View Article : Google Scholar : PubMed/NCBI | |
Du P, Wood KM, Rosner MH, Cunningham D, Tate B and Geoghegan KF: Dominance of amyloid precursor protein sequence over host cell secretases in determining beta-amyloid profiles studies of interspecies variation and drug action by internally standardized immunoprecipitation/mass spectrometry. J Pharmacol Exp Ther. 320:1144–1152. 2007. View Article : Google Scholar : PubMed/NCBI | |
Beck M, Bigl V and Rossner S: Guinea pigs as a nontransgenic model for APP processing in vitro and in vivo. Neurochem Res. 28:637–644. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, Yu X, Cheng S, Yan R, Wang Q, et al: β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res. 1552:41–54. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H and Shimizu K: A new murine model of accelerated senescence. Mech Ageing Dev. 17:183–194. 1981. View Article : Google Scholar : PubMed/NCBI | |
Flood JF and Morley JE: Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev. 22:1–20. 1998. View Article : Google Scholar : PubMed/NCBI | |
Stefanova NA, Kozhevnikova OS, Vitovtov AO, Maksimova KY, Logvinov SV, Rudnitskaya EA, Korbolina EE, Muraleva NA and Kolosova NG: Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle. 13:898–909. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stefanova NA, Muraleva NA, Skulachev VP and Kolosova NG: Alzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. J Alzheimers Dis. 38:681–694. 2014. | |
Poon HF, Calabrese V, Scapagnini G and Butterfield DA: Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci. 59:478–493. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bosch MN, Pugliese M, Gimeno-Bayón J, Rodríguez MJ and Mahy N: Dogs with cognitive dysfunction syndrome: A natural model of Alzheimer's disease. Curr Alzheimer Res. 9:298–314. 2012. View Article : Google Scholar | |
Head E, Callahan H, Muggenburg BA, Cotman CW and Milgram NW: Visual-discrimination learning ability and beta-amyloid accumulation in the dog. Neurobiol Aging. 19:415–425. 1998. View Article : Google Scholar | |
Head E, McCleary R, Hahn FF, Milgram NW and Cotman CW: Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging. 21:89–96. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, White RG, Bobik M, Marks JS and Russell MJ: Distribution of beta-amyloid in the canine brain. Neuroreport. 8:1009–1012. 1997. View Article : Google Scholar : PubMed/NCBI | |
Satou T, Cummings BJ, Head E, Nielson KA, Hahn FF, Milgram NW, Velazquez P, Cribbs DH, Tenner AJ and Cotman CW: The progression of beta-amyloid deposition in the frontal cortex of the aged canine. Brain Res. 774:35–43. 1997. View Article : Google Scholar | |
Cuyckens F, Balcaen LI, De Wolf K, De Samber B, Van Looveren C, Hurkmans R and Vanhaecke F: Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development. Anal Bioanal Chem. 390:1717–1729. 2008. View Article : Google Scholar : PubMed/NCBI | |
Head E: Combining an antioxidant-fortified diet with behavioral enrichment leads to cognitive improvement and reduced brain pathology in aging canines: strategies for healthy aging. Ann NY Acad Sci. 1114:398–406. 2007. View Article : Google Scholar : PubMed/NCBI | |
Papaioannou N, Tooten PC, van Ederen AM, Bohl JR, Rofina J, Tsangaris T and Gruys E: Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid. 8:11–21. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pugliese M, Mascort J, Mahy N and Ferrer I: Diffuse beta-amyloid plaques and hyperphosphorylated tau are unrelated processes in aged dogs with behavioral deficits. Acta Neuropathol. 112:175–183. 2006. View Article : Google Scholar : PubMed/NCBI | |
Languille S, Blanc S, Blin O, Canale CI, Dal-Pan A, Devau G, Dhenain M, Dorieux O, Epelbaum J, Gomez D, et al: The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev. 11:150–162. 2012. View Article : Google Scholar | |
Bons N, Rieger F, Prudhomme D, Fisher A and Krause KH: Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease? Genes Brain Behav. 5:120–130. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kraska A, Dorieux O, Picq JL, Petit F, Bourrin E, Chenu E, Volk A, Perret M, Hantraye P, Mestre-Frances N, et al: Age-associated cerebral atrophy in mouse lemur primates. Neurobiol Aging. 32:894–906. 2011. View Article : Google Scholar | |
Giannakopoulos P, Silhol S, Jallageas V, Mallet J, Bons N, Bouras C and Delaère P: Quantitative analysis of tau protein-immunoreactive accumulations and beta amyloid protein deposits in the cerebral cortex of the mouse lemur, Microcebus murinus. Acta Neuropathol. 94:131–139. 1997. View Article : Google Scholar : PubMed/NCBI | |
Laurijssens B, Aujard F and Rahman A: Animal models of Alzheimer's disease and drug development. Drug Discov Today Technol. 10:e319–e327. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bélanger N, Grégoire L, Bédard PJ and Di Paolo T: DHEA improves symptomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiol Aging. 27:1684–1693. 2006. View Article : Google Scholar | |
Yue F, Lu C, Ai Y, Chan P and Zhang Z: Age-associated changes of cerebrospinal fluid amyloid-β and tau in cynomolgus monkeys. Neurobiol Aging. 35:1656–1659. 2014. View Article : Google Scholar : PubMed/NCBI | |
Molteni R, Barnard RJ, Ying Z, Roberts CK and Gómez-Pinilla F: A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 112:803–814. 2002. View Article : Google Scholar : PubMed/NCBI | |
Demetrius LA and Driver J: Alzheimer's as a metabolic disease. Biogerontology. 14:641–649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Herculano B, Tamura M, Ohba A, Shimatani M, Kutsuna N and Hisatsune T: β-alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis. 33:983–997. 2013. | |
Haley RW and Dietschy JM: Is there a connection between the concentration of cholesterol circulating in plasma and the rate of neuritic plaque formation in Alzheimer disease? Arch Neurol. 57:1410–1412. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gibson Wood W, Eckert GP, Igbavboa U and Müller WE: Amyloid beta-protein interactions with membranes and cholesterol: Causes or casualties of Alzheimer's disease. Biochim Biophys Acta. 1610:281–290. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wu YY, Wang X, Tan L, Liu D, Liu XH, Wang Q, Wang JZ and Zhu LQ: Lithium attenuates scopolamine-induced memory deficits with inhibition of GSK-3β and preservation of post-synaptic components. J Alzheimers Dis. 37:515–527. 2013. | |
Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrançois D, Virgili J, Planel E, Giguere Y, et al: Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes. 63:4291–4301. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pinton S, Brüning CA, Sartori Oliveira CE, Prigol M and Nogueira CW: Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer's type model in rats. J Nutr Biochem. 24:311–317. 2013. View Article : Google Scholar | |
Nakamura S, Murayama N, Noshita T, Annoura H and Ohno T: Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain Res. 912:128–136. 2001. View Article : Google Scholar : PubMed/NCBI | |
Winslow JT and Camacho F: Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology (Berl). 121:164–172. 1995. View Article : Google Scholar | |
Sain H, Sharma B, Jaggi AS and Singh N: Pharmacological investigations on potential of peroxisome proliferator-activated receptor-gamma agonists in hyperhomocysteinemia-induced vascular dementia in rats. Neuroscience. 192:322–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kamat PK, Rai S and Nath C: Okadaic acid induced neuro-toxicity: An emerging tool to study Alzheimer's disease pathology. Neurotoxicology. 37:163–172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li P and Wang Y, Liu J, Zhang Z, Cheng W and Wang Y: Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PLoS One. 8:e566582013. View Article : Google Scholar : PubMed/NCBI | |
Bonda DJ, Lee HG, Blair JA, Zhu X, Perry G and Smith MA: Role of metal dyshomeostasis in Alzheimer's disease. Metallomics. 3:267–270. 2011. View Article : Google Scholar : PubMed/NCBI | |
Squire LR and Zola-Morgan S: Memory: Brain systems and behavior. Trends Neurosci. 11:170–175. 1988. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang Z, Li JT, Zhu YH, Zhou HL, Liu S and Wang TH: Effects of NT-4 gene modified fibroblasts transplanted into AD rats. Neurosci Lett. 466:1–5. 2009. View Article : Google Scholar : PubMed/NCBI | |
Savage LM, Sweet AJ, Castillo R and Langlais PJ: The effects of lesions to thalamic lateral internal medullary lamina and posterior nuclei on learning, memory and habituation in the rat. Behav Brain Res. 82:133–147. 1997. View Article : Google Scholar : PubMed/NCBI | |
Avaliani N, Sørensen AT, Ledri M, Bengzon J, Koch P, Brüstle O, Deisseroth K, Andersson M and Kokaia M: Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors. Stem Cells. 32:3088–3098. 2014. View Article : Google Scholar : PubMed/NCBI | |
Green KN, Smith IF and Laferla FM: Role of calcium in the pathogenesis of Alzheimer's disease and transgenic models. Subcell Biochem. 45:507–521. 2007. View Article : Google Scholar | |
Nepovimova E, Uliassi E, Korabecny J, Peña-Altamira LE, Samez S, Pesaresi A, Garcia GE, Bartolini M, Andrisano V, Bergamini C, et al: Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J Med Chem. 57:8576–8589. 2014. View Article : Google Scholar : PubMed/NCBI | |
Akhter R, Sanphui P and Biswas SC: The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem. 289:10812–10822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA and Lindquist S: Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci USA. 111:4013–4018. 2014. View Article : Google Scholar | |
Gong CX, Lidsky T, Wegiel J, Grundke-Iqbal I and Iqbal K: Metabolically active rat brain slices as a model to study the regulation of protein phosphorylation in mammalian brain. Brain Res Brain Res Protoc. 6:134–140. 2001. View Article : Google Scholar : PubMed/NCBI | |
Roder S, Danober L, Pozza MF, Lingenhoehl K, Wiederhold KH and Olpe HR: Electrophysiological studies on the hippocampus and prefrontal cortex assessing the effects of amyloidosis in amyloid precursor protein 23 transgenic mice. Neuroscience. 120:705–720. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li L, Sengupta A, Haque N, Grundke-Iqbal I and Iqbal K: Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett. 566:261–269. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jang J, Yoo JE, Lee JA, Lee DR, Kim JY, Huh YJ, Kim DS, Park CY, Hwang DY, Kim HS, et al: Disease-specific induced pluripotent stem cells: A platform for human disease modeling and drug discovery. Exp Mol Med. 44:202–213. 2012. View Article : Google Scholar : | |
Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H and Suzuki N: Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet. 20:4530–4539. 2011. View Article : Google Scholar : PubMed/NCBI | |
Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature. 482:216–220. 2012.PubMed/NCBI | |
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, et al: Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell. 12:487–496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Macias MP, Gonzales AM, Siniard AL, Walker AW, Corneveaux JJ, Huentelman MJ, Sabbagh MN and Decourt B: A cellular model of amyloid precursor protein processing and amyloid-β peptide production. J Neurosci Methods. 223:114–122. 2014. View Article : Google Scholar : | |
Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, Wang L, Tsuruga K, Tanaka H, Mimura J, et al: Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 94:1–9. 2015. View Article : Google Scholar | |
Giunta S, Andriolo V and Castorina A: Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride. Int J Biochem Cell Biol. 54:122–136. 2014. View Article : Google Scholar : PubMed/NCBI | |
Denis PA: Alzheimer's disease: A gas model. The NADPH oxidase-Nitric Oxide system as an antibubble biomachinery. Med Hypotheses. 81:976–987. 2013. View Article : Google Scholar : PubMed/NCBI | |
Minicozzi V, Chiaraluce R, Consalvi V, Giordano C, Narcisi C, Punzi P, Rossi GC and Morante S: Computational and experimental studies on β-sheet breakers targeting Aβ1-40 fibrils. J Biol Chem. 289:11242–11252. 2014. View Article : Google Scholar : PubMed/NCBI | |
Götz J and Ittner LM: Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci. 9:532–544. 2008. View Article : Google Scholar : PubMed/NCBI | |
Viet MH, Chen CY, Hu CK, Chen YR and Li MS: Discovery of dihydrochalcone as potential lead for Alzheimer's disease: In silico and in vitro study. PLoS One. 8:e791512013. View Article : Google Scholar : PubMed/NCBI | |
Lo AC, Iscru E, Blum D, Tesseur I, Callaerts-Vegh Z, Buée L, De Strooper B, Balschun D and D'Hooge R: Amyloid and tau neuro-pathology differentially affect prefrontal synaptic plasticity and cognitive performance in mouse models of Alzheimer's disease. J Alzheimers Dis. 37:109–125. 2013. | |
Okuma Y and Nomura Y: Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach. Jpn J Pharmacol. 78:399–404. 1998. View Article : Google Scholar |