1
|
Tang SC and Lai KN: The pathogenic role of
the renal proximal tubular cell in diabetic nephropathy. Nephrol
Dial Transplant. 27:3049–3056. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Phillips AO and Steadman R: Diabetic
nephropathy: the central role of renal proximal tubular cells in
tubulointerstitial injury. Histol Histopathol. 17:247–252.
2002.PubMed/NCBI
|
3
|
Vallon V and Thomson SC: Renal function in
diabetic disease models: the tubular system in the pathophysiology
of the diabetic kidney. Annu Rev Physiol. 74:351–375. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Loeffler I and Wolf G: Transforming growth
factor-β and the progression of renal disease. Nephrol Dial
Transplant. 29(Suppl 1): i37–i45. 2014. View Article : Google Scholar
|
5
|
Massagué J and Gomis RR: The logic of
TGFbeta signaling. FEBS Lett. 580:2811–2820. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Stroschein SL, Wang W, Zhou S, Zhou Q and
Luo K: Negative feedback regulation ofTGF-beta signaling by the
SnoN oncoprotein. Science. 286:771–774. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wotton D and Massagué J: Smad
transcriptional corepressors in TGF beta family signaling. Curr Top
Microbiol Immunol. 254:145–164. 2001.PubMed/NCBI
|
8
|
Luo K: Ski and SnoN: Negative regulators
of TGF-beta signaling. Curr Opin Genet Dev. 14:65–70. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Deheuninck J and Luo K: Ski and SnoN,
potent negative regulators of TGF-beta signaling. Cell Res.
19:47–57. 2009. View Article : Google Scholar
|
10
|
Chen S, Jim B and Ziyadeh FN: Diabetic
nephropathy and transforming growth factor-beta:transforming our
view of glomerulosclerosis and fibrosis build-up. Semin Nephrol.
23:532–543. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hills CE and Squires PE: The role of TGF-β
and epithelial-to mesenchymal transition in diabetic nephropathy.
Cytokine Growth Factor Rev. 22:131–139. 2011.PubMed/NCBI
|
12
|
Lan HY: Transforming growth factor-β/Smad
signalling in diabetic nephropathy. Clin Exp Pharmacol Physiol.
39:731–738. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu R, Wang Y, Xiao Y, Shi M, Zhang G and
Guo B: SnoN as a key regulator of the high glucose-induced
epithelial-mesenchymal transition in cells of the proximal tubule.
Kidney Blood Press Res. 35:517–528. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tan R, Zhang J, Tan X, Zhang X, Yang J and
Liu Y: Downregulation of SnoN expression in obstructive nephropathy
is mediated by an enhanced ubiquitin-dependent degradation. J Am
Soc Nephrol. 17:2781–2791. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fukasawa H, Yamamoto T, Togawa A, Ohashi
N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori T, Suzuki S, et
al: Ubiquitin-dependent degradation of SnoN and Ski is increased in
renal fibrosis induced by obstructive injury. Kidney Int.
69:1733–1740. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu X, Sun Y, Weinberg RA and Lodish HF:
Ski/Sno and TGF-beta signaling. Cytokine Growth Factor Rev. 12:1–8.
2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu JW, Krawitz AR, Chai J, Li W, Zhang F,
Luo K and Shi Y: Structural mechanism of Smad4 recognition by the
nuclear oncoprotein Ski: insights on Ski-mediated repression of
TGF-beta signaling. Cell. 111:357–367. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang J, Zhang X, Li Y and Liu Y:
Downregulation of Smad transcriptional corepressors SnoN and Ski in
the fibrotic kidney: an amplification mechanism for TGF-beta1
signaling. J Am Soc Nephrol. 14:3167–3177. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ziyadeh FN: Mediators of diabetic renal
disease: The case for TGF-β as the major mediator. J Am Soc
Nephrol. 15(Suppl 1): S55–S57. 2004. View Article : Google Scholar
|
20
|
Debigaré R and Price SR: Proteolysis, the
ubiquitin-proteasome system, and renal diseases. Am J Physiol Renal
Physiol. 285:F1–F8. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mani A and Gelmann EP: The
ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol.
23:4776–4789. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bonni S, Wang HR, Causing CG, Kavsak P,
Stroschein SL, Luo K and Wrana JL: TGF-beta induces assembly of a
Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for
degradation. Nat Cell Biol. 3:587–595. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wan Y, Liu X and Kirschner MW: The
anaphase-promoting complex mediates TGF-beta signaling by targeting
SnoN for destruction. Mol Cell. 8:1027–1039. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nagano Y, Mavrakis KJ, Lee KL, Fujii T,
Koinuma D, Sase H, Yuki K, Isogaya K, Saitoh M, Imamura T, et al:
Arkadia induces degradation of SnoN and c-Ski to enhance
transforming growth factor-beta signaling. J Biol Chem.
282:20492–20501. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ohashi N, Yamamoto T, Uchida C, Togawa A,
Fukasawa H, Fujigaki Y, Suzuki S, Kitagawa K, Hattori T, Oda T, et
al: Transcriptional induction of Smurf2 ubiquitin ligase by
TGF-beta. FEBS Lett. 579:2557–2563. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tan R, He W, Lin X, Kiss LP and Liu Y:
Smad ubiquitination regulatory factor-2 in the fibrotic kidney:
Regulation, target specificity, and functional implication. Am J
Physiol Renal Physiol. 294:F1076–F1083. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Callahan JF, Burgess JL, Fornwald JA,
Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lehr R,
Mathur A, et al: Identification of novel inhibitors of the
transforming growth factor beta1 (TGF-β1) type 1 receptor (ALK5). J
Med Chem. 45:999–1001. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Inman GJ, Nicolás FJ, Callahan JF, Harling
JD, Gaster LM, Reith AD, Laping NJ and Hill CS: SB-431542 is a
potent and specific inhibitor of transforming growth factor-beta
superfamily type I activin receptor-like kinase (ALK) receptors
ALK4, ALK5, and ALK7. Mol Pharmacol. 62:65–74. 2002. View Article : Google Scholar : PubMed/NCBI
|