1
|
Goetzl EJ: Pleiotypic mechanisms of
cellular responses to biologically active lysophospholipids.
Prostaglandins. 64:11–20. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Masiello LM, Fotos JS, Galileo DS and
Karin NJ: Lysophosphatidic acid induces chemotaxis in MC3T3-E1
osteoblastic cells. Bone. 39:72–82. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu YB, Kharode Y, Bodine PV, Yaworsky PJ,
Robinson JA and Billiard J: LPA induces osteoblast differentiation
through interplay of two receptors: LPA1 and
LPA4. J Cell Biochem. 109:794–800. 2010.PubMed/NCBI
|
4
|
Peyruchaud O, Leblanc R and David M:
Pleiotropic activity of lysophosphatidic acid in bone metastasis.
Biochim Biophys Acta. 1831:99–104. 2013. View Article : Google Scholar
|
5
|
Sims SM, Panupinthu N, Lapierre DM,
Pereverzev A and Dixon SJ: Lysophosphatidic acid: a potential
mediator of osteoblast-osteoclast signaling in bone. Biochim
Biophys Acta. 1831:109–116. 2013. View Article : Google Scholar
|
6
|
Hurst-Kennedy J, Boyan BD and Schwartz Z:
Lysophosphatidic acid signaling promotes proliferation,
differentiation, and cell survival in rat growth plate
chondrocytes. Biochim Biophys Acta. 1793:836–846. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Eichholtz T, Jalink K, Fahrenfort I and
Moolenaar WH: The bioactive phospholipid lysophosphatidic acid is
released from activated platelets. Biochem J. 291:677–680. 1993.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Panupinthu N, Rogers JT, Zhao L,
Solano-Flores LP, Possmayer F, Sims SM and Dixon SJ: P2X7 receptors
on osteoblasts couple to production of lysophosphatidic acid: a
signaling axis promoting osteogenesis. J Cell Biol. 181:859–871.
2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Noguchi K, Herr D, Mutoh T and Chun J:
Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol.
9:15–23. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fukushima N and Chun J: The LPA receptors.
Prostaglandins Other Lipid Mediat. 64:21–32. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dziak R, Yang BM, Leung BW, Li S, Marzec
N, Margarone J and Bobek L: Effects of sphingosine-1-phosphate and
lysophosphatidic acid on human osteoblastic cells. Prostaglandins
Leukot Essent Fatty Acids. 68:239–249. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vial C, Zúñiga LM, Cabello-Verrugio C,
Cañón P, Fadic R and Brandan E: Skeletal muscle cells express the
profibrotic cytokine connective tissue growth factor (CTGF/CCN2),
which induces their dedifferentiation. J Cell Physiol. 215:410–421.
2008. View Article : Google Scholar
|
13
|
Wiedmaier N, Müller S, Köberle M, Manncke
B, Krejci J, Autenrieth IB and Bohn E: Bacteria induce CTGF and
CYR61 expression in epithelial cells in a lysophosphatidic acid
receptor-dependent manner. Int J Med Microbiol. 298:231–243. 2008.
View Article : Google Scholar
|
14
|
Brigstock DR: The CCN family: a new
stimulus package. J Endocrinol. 178:169–175. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brigstock DR, Goldschmeding R, Katsube KI,
Lam SC, Lau LF, Lyons K, Naus C, Perbal B, Riser B, Takigawa M and
Yeger H: Proposal for a unified CCN nomenclature. Mol Pathol.
56:127–128. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kawaki H, Kubota S, Suzuki A, Yamada T,
Matsumura T, Mandai T, Yao M, Maeda T, Lyons KM and Takigawa M:
Functional requirement of CCN2 for intramembranous bone formation
in embryonic mice. Biochem Biophys Res Commun. 366:450–456. 2008.
View Article : Google Scholar
|
17
|
Nakanishi T, Nishida T, Shimo T, Kobayashi
K, Kubo T, Tamatani T, Tezuka K and Takigawa M: Effects of
CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene,
on the proliferation and differentiation of chondrocytes in
culture. Endocrinology. 141:264–273. 2000.
|
18
|
Arnott JA, Lambi AG, Mundy C, Hendesi H,
Pixley RA, Owen TA, Safadi FF and Popoff SN: The role of connective
tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev
Eukaryot Gene Expr. 21:43–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cabello-Verrugio C, Córdova G, Vial C,
Zúñiga LM and Brandan E: Connective tissue growth factor induction
by lysophosphatidic acid requires transactivation of transforming
growth factor type β receptors and the JNK pathway. Cell Signal.
23:449–457. 2011. View Article : Google Scholar
|
20
|
Heusinger-Ribeiro J, Eberlein M, Wahab NA
and Goppelt-Struebe M: Expression of connective tissue growth
factor in human renal fibroblasts: regulatory roles of RhoA and
cAMP. J Am Soc Nephrol. 12:1853–1861. 2001.PubMed/NCBI
|
21
|
Chen G, Zhu JY, Zhang ZL, Zhang W, Ren JG,
Wu M, Hong ZY, Lv C, Pang DW and Zhao YF: Transformation of
cell-derived microparticles into quantum-dot-labeled nanovectors
for antitumor siRNA delivery. Angew Chem Int Ed Engl. 54:1036–1040.
2015. View Article : Google Scholar
|
22
|
Li YG, Zhu W, Tao JP, Xin P, Liu MY, Li JB
and Wei M: Resveratrol protects cardiomyocytes from oxidative
stress through SIRT1 and mitochondrial biogenesis signaling
pathways. Biochem Biophys Res Commun. 438:270–276. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu Q, Wan Q, Yang R, Zhou H and Li Z:
Effects of intermittent versus continuous parathyroid hormone
administration on condylar chondrocyte proliferation and
differentiation. Biochem Biophys Res Commun. 424:182–188. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Grey A, Banovic T, Naot D, Hill B, Callon
K, Reid I and Cornish J: Lysophosphatidic acid is an osteoblast
mitogen whose proliferative actions involve G(i) proteins and
protein kinase C, but not P42/44 mitogen-activated protein kinases.
Endocrinology. 142:1098–1106. 2001.PubMed/NCBI
|
25
|
Ohta H, Sato K, Murata N, Damirin A,
Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, et
al: Ki16425, a subtype-selective antagonist for EDG-family
lysophosphatidic acid receptors. Mol Pharmacol. 64:994–1005. 2003.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Aki Y, Kondo A, Nakamura H and Togari A:
Lysophosphatidic acid-stimulated interleukin-6 and -8 synthesis
through LPA1 receptors on human osteoblasts. Arch Oral
Biol. 53:207–213. 2008. View Article : Google Scholar
|
27
|
Escribá PV, Wedegaertner PB, Goñi FM and
Vögler O: Lipid-protein interactions in GPCR-associated signaling.
Biochim Biophys Acta. 1768:836–852. 2007. View Article : Google Scholar
|
28
|
Yuan X, Chen H, Li X, Dai M, Zeng H, Shan
L, Sun Q and Zhang W: Inhibition of protein kinase C by
isojacareubin suppresses hepatocellular carcinoma metastasis and
induces apoptosis in vitro and in vivo. Sci Rep. 5:128892015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee CW, Rivera R, Gardell S, Dubin AE and
Chun J: GPR92 as a new G12/13 - and Gq -
coupled lysophosphatidic acid receptor that increases cAMP,
LPA5. J Biol Chem. 281:23589–23597. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lee CW, Rivera R, Dubin AE and Chun J:
LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor
utilizing G(s)-,
G(q)/G(i)-mediated calcium signaling and
G(12/13)-mediated Rho activation. J Biol Chem.
282:4310–4317. 2007. View Article : Google Scholar
|
31
|
Lin ME, Herr DR and Chun J:
Lysophosphatidic acid (LPA) receptors: signaling properties and
disease relevance. Prostaglandins Other Lipid Mediat. 91:130–138.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Boes M, Dake BL, Booth BA, Erondu NE, Oh
Y, Hwa V, Rosenfeld R and Bar RS: Connective tissue growth factor
(IGFBP-rP2) expression and regulation in cultured bovine
endothelial cells. Endocrinology. 140:1575–1580. 1999.PubMed/NCBI
|