Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle
- Authors:
- Arunava Bandyopadhaya
- Caterina Constantinou
- Nikolaos Psychogios
- Ryusuke Ueki
- Shingo Yasuhara
- J. A. Jeevendra Martyn
- Julie Wilhelmy
- Michael Mindrinos
- Laurence G. Rahme
- A. Aria Tzika
-
Affiliations: Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA, NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA, Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA - Published online on: February 12, 2016 https://doi.org/10.3892/ijmm.2016.2487
- Pages: 867-878
-
Copyright: © Bandyopadhaya et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rudel T, Kepp O and Kozjak-Pavlovic V: Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat Rev Microbiol. 8:693–705. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang JH, Tong J and Gabriel K: Hijacking mitochondria: bacterial toxins that modulate mitochondrial function. IUBMB Life. 64:397–401. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trumpower BL: Cytochrome bc1 complexes of microorganisms. Microbiol Rev. 54:101–129. 1990.PubMed/NCBI | |
Van Ark G and Berden JA: Binding of HQNO to beef-heart sub-mitochondrial particles. Biochim Biophys Acta. 459:119–127. 1977. View Article : Google Scholar : PubMed/NCBI | |
Schwarzer C, Fu Z, Shuai S, Babbar S, Zhao G, Li C and Machen TE: Pseudomonas aeruginosa homoserine lactone triggers apoptosis and Bak/Bax-independent release of mitochondrial cytochrome C in fibroblasts. Cell Microbiol. 16:1094–1104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Raza H, John A and Shafarin J: NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction. PLoS One. 9:e1033792014. View Article : Google Scholar : PubMed/NCBI | |
Valyi-Nagy T and Dermody TS: Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol Histopathol. 20:957–967. 2005.PubMed/NCBI | |
Pohanka M: Role of oxidative stress in infectious diseases. A review. Folia Microbiol (Praha). 58:503–513. 2013. View Article : Google Scholar | |
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar | |
Schieber M and Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol. 24:R453–R462. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, Dirden-Kramer B, Boldogh I, Ernst PB and Crowe SE: Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun. 75:4030–4039. 2007. View Article : Google Scholar : PubMed/NCBI | |
Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G and Knaus UG: Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal. 20:2695–2709. 2014. View Article : Google Scholar | |
Paracha UZ, Fatima K, Alqahtani M, Chaudhary A, Abuzenadah A, Damanhouri G and Qadri I: Oxidative stress and hepatitis C virus. Virol J. 10:2512013. View Article : Google Scholar : PubMed/NCBI | |
Pieczenik SR and Neustadt J: Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 83:84–92. 2007. View Article : Google Scholar : PubMed/NCBI | |
Garofalo RP, Kolli D and Casola A: Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid Redox Signal. 18:186–217. 2013. View Article : Google Scholar : | |
Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M and Sasakawa C: Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol. 195:931–942. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guicciardi ME and Gores GJ: Life and death by death receptors. FASEB J. 23:1625–1637. 2009. View Article : Google Scholar : PubMed/NCBI | |
Madeo F, Carmona-Gutierrez D, Ring J, Büttner S, Eisenberg T and Kroemer G: Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun. 382:227–231. 2009. View Article : Google Scholar : PubMed/NCBI | |
Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, Iuliano L, Piroddi M, Dechecchi MC and Cabrini G: Working Group on Inflammation in Cystic Fibrosis: oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta. 1822:690–713. 2012. View Article : Google Scholar : PubMed/NCBI | |
Navon-Venezia S, Ben-Ami R and Carmeli Y: Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis. 18:306–313. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kerr KG and Snelling AM: Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. 73:338–344. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH and Quax WJ: The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 76:46–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G and Rahme LG: The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol. 55:998–1014. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE and Rahme LG: MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol. 62:1689–1699. 2006. View Article : Google Scholar : PubMed/NCBI | |
Parker CT and Sperandio V: Cell-to-cell signalling during pathogenesis. Cell Microbiol. 11:363–369. 2009. View Article : Google Scholar : | |
Kesarwani M, Hazan R, He J, Que YA, Apidianakis Y, Lesic B, Xiao G, Dekimpe V, Milot S, Deziel E, et al: A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes. PLoS Pathog. 7:e10021922011. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Slamti L, Nielsen-LeRoux C, Lereclus D and Raymond B: The social biology of quorum sensing in a naturalistic host pathogen system. Curr Biol. 24:2417–2422. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ng WL and Bassler BL: Bacterial quorum-sensing network architectures. Annu Rev Genet. 43:197–222. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rumbaugh KP and Kaufmann GF: Exploitation of host signaling pathways by microbial quorum sensing signals. Curr Opin Microbiol. 15:162–168. 2012. View Article : Google Scholar | |
Bandyopadhaya A, Kesarwani M, Que YA, He J, Padfield K, Tompkins R and Rahme LG: The quorum sensing volatile molecule 2-amino acetophenon modulates host immune responses in a manner that promotes life with unwanted guests. PLoS Pathog. 8:e10030242012. View Article : Google Scholar : PubMed/NCBI | |
Que YA, Hazan R, Strobel B, Maura D, He J, Kesarwani M, Panopoulos P, Tsurumi A, Giddey M, Wilhelmy J, et al: A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One. 8:e801402013. View Article : Google Scholar : PubMed/NCBI | |
Tzika AA, Constantinou C, Bandyopadhaya A, Psychogios N, Lee S, Mindrinos M, Martyn JA, Tompkins RG and Rahme LG: A small volatile bacterial molecule triggers mitochondrial dysfunction in murine skeletal muscle. PLoS One. 8:e745282013. View Article : Google Scholar : PubMed/NCBI | |
Astrakas LG, Goljer I, Yasuhara S, Padfield KE, Zhang Q, Gopalan S, Mindrinos MN, Dai G, Yu YM, Martyn JA, et al: Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis. FASEB J. 19:1431–1440. 2005. View Article : Google Scholar : PubMed/NCBI | |
Padfield KE, Astrakas LG, Zhang Q, Gopalan S, Dai G, Mindrinos MN, Tompkins RG, Rahme LG and Tzika AA: Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc Natl Acad Sci USA. 102:5368–5373. 2005. View Article : Google Scholar : PubMed/NCBI | |
Morvan D, Demidem A, Papon J and Madelmont JC: Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations. Magn Reson Med. 49:241–248. 2003. View Article : Google Scholar : PubMed/NCBI | |
Asai A, Sahani N, Kaneki M, Ouchi Y, Martyn JA and Yasuhara SE: Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS One. 2:e8062007. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa S, Koseki H, Nagashima M, Maeyama Y, Yomogida K, Mehr C, Rutledge M, Greenfeld H, Kaneki M, Tompkins RG, et al: Title efficacy of phosphodiesterase 5 inhibitor on distant burn-induced muscle autophagy, microcirculation, and survival rate. Am J Physiol Endocrinol Metab. 304:E922–E933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Burgmaier G, Schönrock LM, Kuhlmann T, Richter-Landsberg C and Brück W: Association of increased bcl-2 expression with rescue from tumor necrosis factor-alpha-induced cell death in the oligodendrocyte cell line OLN-93. J Neurochem. 75:2270–2276. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S and Scorilas A: The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol. 2012:5243082012. View Article : Google Scholar | |
Davies L, Spiller D, White MR, Grierson I and Paraoan L: PERP expression stabilizes active p53 via modulation of p53-MDM2 interaction in uveal melanoma cells. Cell Death Dis. 2:e1362011. View Article : Google Scholar : PubMed/NCBI | |
Huo J, Xu S and Lam KP: Fas apoptosis inhibitory molecule regulates T cell receptor-mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression. J Biol Chem. 285:11827–11835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Ge Y, Sun L, Ma W, Wu J, Zhang X, Hu X, Eaves CJ, Wu D and Zhao Y: Growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth. PLoS One. 9:e861952014. View Article : Google Scholar : PubMed/NCBI | |
Tzika AA, Astrakas LG, Cao H, Mintzopoulos D, Zhang Q, Padfield K, Yu H, Mindrinos MN, Rahme LG and Tompkins RG: Murine intramyocellular lipids quantified by NMR act as metabolic biomarkers in burn trauma. Int J Mol Med. 21:825–832. 2008.PubMed/NCBI | |
Yuzefovych LV, Musiyenko SI, Wilson GL and Rachek LI: Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 8:e540592013. View Article : Google Scholar : PubMed/NCBI | |
Blankenberg FG: In vivo detection of apoptosis. J Nucl Med. 49(Suppl 2): 81S–95S. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vayssier-Taussat M, Kreps SE, Adrie C, Dall'Ava J, Christiani D and Polla BS: Mitochondrial membrane potential: a novel biomarker of oxidative environmental stress. Environ Health Perspect. 110:301–305. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, et al: Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. 2012:3296352012. View Article : Google Scholar | |
Shokolenko I, Venediktova N, Bochkareva A, Wilson GL and Alexeyev MF: Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 37:2539–2548. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blasiak J, Glowacki S, Kauppinen A and Kaarniranta K: Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration. Int J Mol Sci. 14:2996–3010. 2013. View Article : Google Scholar : PubMed/NCBI | |
Handschin C and Spiegelman BM: Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 27:728–735. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Handschin C and Spiegelman BM: Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1:361–370. 2005. View Article : Google Scholar : PubMed/NCBI | |
Supinski GS and Callahan LA: Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol (1985). 100:1770–1777. 2006. View Article : Google Scholar | |
Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Fushiki S, Fliss H and Nakagawa M: Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res. 59:428–440. 2003. View Article : Google Scholar : PubMed/NCBI | |
Danial NN and Korsmeyer SJ: Cell death: critical control points. Cell. 116:205–219. 2004. View Article : Google Scholar : PubMed/NCBI | |
Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD and Stein DT: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 276:E977–E989. 1999.PubMed/NCBI | |
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW and Shulman GI: Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 300:1140–1142. 2003. View Article : Google Scholar : PubMed/NCBI | |
Petersen KF, Dufour S, Befroy D, Garcia R and Shulman GI: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 350:664–671. 2004. View Article : Google Scholar : PubMed/NCBI | |
Blankenberg FG, Katsikis PD, Storrs RW, Beaulieu C, Spielman D, Chen JY, Naumovski L and Tait JF: Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood. 89:3778–3786. 1997.PubMed/NCBI | |
Boren J and Brindle KM: Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 19:1561–1570. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hakumäki JM, Poptani H, Sandmair AM, Ylä-Herttuala S and Kauppinen RA: 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nat Med. 5:1323–1327. 1999. View Article : Google Scholar | |
Mullen TD and Obeid LM: Ceramide and apoptosis: Exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med Chem. 12:340–363. 2012. View Article : Google Scholar | |
Martinez TN, Chen X, Bandyopadhyay S, Merrill AH and Tansey MG: Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons. Mol Neurodegener. 7:452012. View Article : Google Scholar : PubMed/NCBI | |
Giussani P, Tringali C, Riboni L, Viani P and Venerando B: Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci. 15:4356–4392. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aureli M, Murdica V, Loberto N, Samarani M, Prinetti A, Bassi R and Sonnino S: Exploring the link between ceramide and ionizing radiation. Glycoconj J. 31:449–459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jenkins GM: The emerging role for sphingolipids in the eukaryotic heat shock response. Cell Mol Life Sci. 60:701–710. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Brocklyn JR and Williams JB: The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol. 163:26–36. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yasuhara S, Asai A, Sahani ND and Martyn JA: Mitochondria, endoplasmic reticulum, and alternative pathways of cell death in critical illness. Crit Care Med. 35(Suppl): S488–S495. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bernardi P and Di Lisa F: The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 78:100–106. 2015. View Article : Google Scholar : | |
Nabben M, Shabalina IG, Moonen-Kornips E, van Beurden D, Cannon B, Schrauwen P, Nedergaard J and Hoeks J: Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice. Biochim Biophys Acta. 1807:1095–1105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reynolds HY, Di Sant'Agnese PA and Zierdt CH: Mucoid Pseudomonas aeruginosa. A sign of cystic fibrosis in young adults with chronic pulmonary disease? JAMA. 236:2190–2192. 1976. View Article : Google Scholar : PubMed/NCBI | |
Scott-Thomas AJ, Syhre M, Pattemore PK, Epton M, Laing R, Pearson J and Chambers ST: 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med. 10:562010. View Article : Google Scholar : PubMed/NCBI | |
Velsor LW, Kariya C, Kachadourian R and Day BJ: Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Respir Cell Mol Biol. 35:579–586. 2006. View Article : Google Scholar : PubMed/NCBI | |
Divangahi M, Balghi H, Danialou G, Comtois AS, Demoule A, Ernest S, Haston C, Robert R, Hanrahan JW, Radzioch D and Petrof BJ: Lack of CFTR in skeletal muscle predisposes to muscle wasting and diaphragm muscle pump failure in cystic fibrosis mice. PLoS Genet. 5:e10005862009. View Article : Google Scholar : PubMed/NCBI | |
Rottner M, Tual-Chalot S, Mostefai HA, Andriantsitohaina R, Freyssinet JM and Martínez MC: Increased oxidative stress induces apoptosis in human cystic fibrosis cells. PLoS One. 6:e248802011. View Article : Google Scholar : PubMed/NCBI | |
Moylan JS and Reid MB: Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve. 35:411–429. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schwartz LM: Atrophy and programmed cell death of skeletal muscle. Cell Death Differ. 15:1163–1169. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aare S, Radell P, Eriksson LI, Akkad H, Chen YW, Hoffman EP and Larsson L: Effects of corticosteroids in the development of limb muscle weakness in a porcine intensive care unit model. Physiol Genomics. 45:312–320. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Lam SH, Shen Y and Gong Z: Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver. PLoS One. 8:e687372013. View Article : Google Scholar : PubMed/NCBI | |
Maestre I, Jordán J, Calvo S, Reig JA, Ceña V, Soria B, Prentki M and Roche E: Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the beta-cell line INS-1. Endocrinology. 144:335–345. 2003. View Article : Google Scholar | |
Lartigue L and Faustin B: Mitochondria: metabolic regulators of innate immune responses to pathogens and cell stress. Int J Biochem Cell Biol. 45:2052–2056. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nicolson GL: Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Altern Ther Health Med. at50272013.PubMed/NCBI | |
Frick CG, Fink H, Gordan ML, Eckel B, Martyn JA and Blobner M: Chronic Escherichia coli infection induces muscle wasting without changing acetylcholine receptor numbers. Intensive Care Med. 34:561–567. 2008. View Article : Google Scholar | |
Macallan DC, McNurlan MA, Kurpad AV, de Souza G, Shetty PS, Calder AG and Griffin GE: Whole body protein metabolism in human pulmonary tuberculosis and undernutrition: evidence for anabolic block in tuberculosis. Clin Sci (Lond). 94:321–331. 1998. View Article : Google Scholar | |
Machado AM, Desler C, Bøggild S, Strickertsson JA, Friis-Hansen L, Figueiredo C, Seruca R and Rasmussen LJ: Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells. Mech Ageing Dev. 134:460–466. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morton RE, Hutchings J, Halliday D, Rennie MJ and Wolman SL: Protein metabolism during treatment of chest infection in patients with cystic fibrosis. Am J Clin Nutr. 47:214–219. 1988.PubMed/NCBI |