1
|
Callis TE, Jensen BC, Weck KE and Willis
MS: Evolving molecular diagnostics for familial cardiomyopathies:
at the heart of it all. Expert Rev Mol Diagn. 10:329–351. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hughes SE and McKenna WJ: New insights
into the pathology of inherited cardiomyopathy. Heart. 91:257–264.
2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hershberger RE, Hedges DJ and Morales A:
Dilated cardiomyopathy: the complexity of a diverse genetic
architecture. Nat Rev Cardiol. 10:531–547. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hinson JT, Chopra A, Nafissi N, Polacheck
WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, et
al: HEART DISEASE. Titin mutations in iPS cells define sarcomere
insufficiency as a cause of dilated cardiomyopathy. Science.
349:982–986. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
van Spaendonck-Zwarts KY, Posafalvi A, van
den Berg MP, Hilfiker-Kleiner D, Bollen IA, Sliwa K, Alders M,
Almomani R, van Langen IM, van der Meer P, et al: Titin gene
mutations are common in families with both peripartum
cardiomyopathy and dilated cardiomyopathy. Eur Heart J.
35:2165–2173. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhou YM, Dai XY, Qiu XB, Yuan F, Li RG, Xu
YJ, Qu XK, Huang RT, Xue S and Yang YQ: HAND1 loss-of-function
mutation associated with familial dilated cardiomyopathy. Clin Chem
Lab Med. Nov 18–2015.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhao CM, Bing-Sun, Song HM, Wang J, Xu WJ,
Jiang JF, Qiu XB, Yuan F, Xu JH and Yang YQ: TBX20 loss-of-function
mutation associated with familial dilated cardiomyopathy. Clin Chem
Lab Med. 54:325–332. 2016. View Article : Google Scholar
|
8
|
Qu XK, Yuan F, Li RG, Xu L, Jing WF, Liu
H, Xu YJ, Zhang M, Liu X, Fang WY, et al: Prevalence and spectrum
of LRRC10 mutations associated with idiopathic dilated
cardiomyopathy. Mol Med Rep. 12:3718–3724. 2015.PubMed/NCBI
|
9
|
Zhang XL, Qiu XB, Yuan F, Wang J, Zhao CM,
Li RG, Xu L, Xu YJ, Shi HY, Hou XM, et al: TBX5 loss-of-function
mutation contributes to familial dilated cardiomyopathy. Biochem
Biophys Res Commun. 459:166–171. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou W, Zhao L, Jiang JQ, Jiang WF, Yang
YQ and Qiu XB: A novel TBX5 loss-of-function mutation associated
with sporadic dilated cardiomyopathy. Int J Mol Med. 36:282–288.
2015.PubMed/NCBI
|
11
|
Zhang XL, Dai N, Tang K, Chen YQ, Chen W,
Wang J, Zhao CM, Yuan F, Qiu XB, Qu XK, et al: GATA5
loss-of-function mutation in familial dilated cardiomyopathy. Int J
Mol Med. 35:763–770. 2015.
|
12
|
Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li
RG, Xu YJ, Zhang M, Fang WY, Qu XK, et al: GATA6 loss-of-function
mutations contribute to familial dilated cardiomyopathy. Int J Mol
Med. 34:1315–1322. 2014.PubMed/NCBI
|
13
|
Zhao L, Xu JH, Xu WJ, Yu H, Wang Q, Zheng
HZ, Jiang WF, Jiang JF and Yang YQ: A novel GATA4 loss-of-function
mutation responsible for familial dilated cardiomyopathy. Int J Mol
Med. 33:654–660. 2014.
|
14
|
Li J, Liu WD, Yang ZL, Yuan F, Xu L, Li RG
and Yang YQ: Prevalence and spectrum of GATA4 mutations associated
with sporadic dilated cardiomyopathy. Gene. 548:174–181. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Reinstein E, Orvin K, Tayeb-Fligelman E,
Stiebel-Kalish H, Tzur S, Pimienta AL, Bazak L, Bengal T, Cohen L,
Gaton DD, et al: Mutations in TAX1BP3 cause dilated cardiomyopathy
with septo-optic dysplasia. Hum Mutat. 36:439–442. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dhandapany PS, Razzaque MA, Muthusami U,
Kunnoth S, Edwards JJ, Mulero-Navarro S, Riess I, Pardo S, Sheng J,
Rani DS, et al: RAF1 mutations in childhood-onset dilated
cardiomyopathy. Nat Genet. 46:635–639. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zou Y, Song L, Wang Z, Ma A, Liu T, Gu H,
Lu S, Wu P, Zhang Y, Shen L, et al: Prevalence of idiopathic
hypertrophic cardiomyopathy in China: A population-based
echocardiographic analysis of 8080 adults. Am J Med. 116:14–18.
2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Maron BJ, Gardin JM, Flack JM, Gidding SS,
Kurosaki TT and Bild DE: Prevalence of hypertrophic cardiomyopathy
in a general population of young adults. Echocardiographic analysis
of 4111 subjects in the CARDIA Study. Coronary Artery Risk
Development in (Young) Adults. Circulation. 92:785–789. 1995.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yuan F, Qiu XB, Li RG, Qu XK, Wang J, Xu
YJ, Liu X, Fang WY, Yang YQ and Liao DN: A novel NKX2-5
loss-of-function mutation predisposes to familial dilated
cardiomyopathy and arrhythmias. Int J Mol Med. 35:478–486.
2015.
|
20
|
Rothberg JM, Hinz W, Rearick TM, Schultz
J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M,
et al: An integrated semiconductor device enabling non-optical
genome sequencing. Nature. 475:348–352. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gersh BJ, Maron BJ, Bonow RO, Dearani JA,
Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR and Rakowski H;
American College of Cardiology Foundation/American Heart
Association Task Force on Practice Guidelines: 2011 ACCF/AHA
Guideline for the Diagnosis and Treatment of Hypertrophic
Cardiomyopathy a report of the American College of Cardiology
Foundation/American Heart Association Task Force on Practice
Guidelines. Developed in collaboration with the American
Association for Thoracic Surgery, American Society of
Echocardiography, American Society of Nuclear Cardiology, Heart
Failure Society of America, Heart Rhythm Society, Society for
Cardiovascular Angiography and Interventions, and Society of
Thoracic Surgeons. J Am Coll Cardiol. 58:e212–260. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mestroni L, Maisch B, McKenna WJ, Schwartz
K, Charron P, Rocco C, Tesson F, Richter A, Wilke A and Komajda M:
Collaborative Research Group of the European Human and Capital
Mobility Project on Familial Dilated Cardiomyopathy: Guidelines for
the study of familial dilated cardiomyopathies. Eur Heart J.
20:93–102. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Robinson JT, Thorvaldsdóttir H, Winckler
W, Guttman M, Lander ES, Getz G and Mesirov JP: Integrative
genomics viewer. Nat Biotechnol. 29:24–26. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Richards CS, Bale S, Bellissimo DB, Das S,
Grody WW, Hegde MR, Lyon E and Ward BE; Collaborative Research
Group of the European Human and Capital Mobility Project on
Familial Dilated Cardiomyopathy: ACMG recommendations for standards
for interpretation and reporting of sequence variations: Revisions
2007. Genet Med. 10:294–300. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Adzhubei IA, Schmidt S, Peshkin L,
Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A
method and server for predicting damaging missense mutations. Nat
Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kumar P, Henikoff S and Ng PC: Predicting
the effects of coding non-synonymous variants on protein function
using the SIFT algorithm. Nat Protoc. 4:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schwarz JM, Rödelsperger C, Schuelke M and
Seelow D: MutationTaster evaluates disease-causing potential of
sequence alterations. Nat Methods. 7:575–576. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sikkema-Raddatz B, Johansson LF, de Boer
EN, Almomani R, Boven LG, van den Berg MP, van Spaendonck-Zwarts
KY, van Tintelen JP, Sijmons RH, Jongbloed JD and Sinke RJ:
Targeted next-generation sequencing can replace Sanger sequencing
in clinical diagnostics. Hum Mutat. 34:1035–1042. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tarabeux J, Zeitouni B, Moncoutier V,
Tenreiro H, Abidallah K, Lair S, Legoix-Né P, Leroy Q, Rouleau E,
Golmard L, et al: Streamlined ion torrent PGM-based diagnostics:
BRCA1 and BRCA2 genes as a model. Eur J Hum Genet. 22:535–541.
2014. View Article : Google Scholar :
|
30
|
Costa JL, Sousa S, Justino A, Kay T,
Fernandes S, Cirnes L, Schmitt F and Machado JC: Nonoptical massive
parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic
setting. Hum Mutat. 34:629–635. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li X, Buckton AJ, Wilkinson SL, John S,
Walsh R, Novotny T, Valaskova I, Gupta M, Game L, Barton PJ, et al:
Towards clinical molecular diagnosis of inherited cardiac
conditions: a comparison of bench-top genome DNA sequencers. PLoS
One. 8:e677442013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lakdawala NK, Funke BH, Baxter S, Cirino
AL, Roberts AE, Judge DP, Johnson N, Mendelsohn NJ, Morel C, Care
M, et al: Genetic testing for dilated cardiomyopathy in clinical
practice. J Card Fail. 18:296–303. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Brito D, Miltenberger-Miltenyi G, Vale
Pereira S, Silva D, Diogo AN and Madeira H: Sarcomeric hypertrophic
cardio-myopathy: genetic profile in a Portuguese population. Rev
Port Cardiol. 31:577–587. 2012.PubMed/NCBI
|
34
|
Zou Y, Wang J, Liu X, Wang Y, Chen Y, Sun
K, Gao S, Zhang C, Wang Z, Zhang Y, et al: Multiple gene mutations,
not the type of mutation, are the modifier of left ventricle
hypertrophy in patients with hypertrophic cardiomyopathy. Mol Biol
Rep. 40:3969–3976. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao Y, Feng Y, Zhang YM, Ding XX, Song
YZ, Zhang AM, Liu L, Zhang H, Ding JH and Xia XS: Targeted
next-generation sequencing of candidate genes reveals novel
mutations in patients with dilated cardiomyopathy. Int J Mol Med.
36:1479–1486. 2015.PubMed/NCBI
|
36
|
Das KJ, Ingles J, Bagnall RD and Semsarian
C: Determining pathogenicity of genetic variants in hypertrophic
cardiomyopathy: importance of periodic reassessment. Genet Med.
16:286–293. 2014. View Article : Google Scholar
|
37
|
Hassel D, Dahme T, Erdmann J, Meder B,
Huge A, Stoll M, Just S, Hess A, Ehlermann P, Weichenhan D, et al:
Nexilin mutations destabilize cardiac Z-disks and lead to dilated
cardiomyopathy. Nat Med. 15:1281–1288. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Geisterfer-Lowrance AA, Christe M, Conner
DA, Ingwall JS, Schoen FJ, Seidman CE and Seidman JG: A mouse model
of familial hypertrophic cardiomyopathy. Science. 272:731–734.
1996. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cheng J, Morales A, Siegfried JD, Li D,
Norton N, Song J, Gonzalez-Quintana J, Makielski JC and Hershberger
RE: SCN5A rare variants in familial dilated cardiomyopathy decrease
peak sodium current depending on the common polymorphism H558R and
common splice variant Q1077del. Clin Transl Sci. 3:287–294. 2010.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen L, Zhang W, Fang C, Jiang S, Shu C,
Cheng H, Li F and Li H: Polymorphism H558R in the human cardiac
sodium channel SCN5A gene is associated with atrial fibrillation. J
Int Med Res. 39:1908–1916. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nikulina SY, Chernova AA, Shulman VA,
Maksimov VN, Gavrilyuk OA, Tretyakova SS and Marilovceva OV: An
investigation of the association of the H558R polymorphism of the
SCN5A gene with idiopathic cardiac conduction disorders. Genet Test
Mol Biomarkers. 19:288–294. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Marangoni S, Di Resta C, Rocchetti M,
Barile L, Rizzetto R, Summa A, Severi S, Sommariva E, Pappone C,
Ferrari M, et al: A Brugada syndrome mutation (p.S216L) and its
modulation by p.H558R polymorphism: standard and dynamic
characterization. Cardiovasc Res. 91:606–616. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Roncarati R, Viviani Anselmi C, Krawitz P,
Lattanzi G, von Kodolitsch Y, Perrot A, di Pasquale E, Papa L,
Portararo P, Columbaro M, et al: Doubly heterozygous LMNA and TTN
mutations revealed by exome sequencing in a severe form of dilated
cardiomyopathy. Eur J Hum Genet. 21:1105–1111. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lekanne Deprez RH, Muurling-Vlietman JJ,
Hruda J, Baars MJ, Wijnaendts LC, Stolte-Dijkstra I, Alders M and
van Hagen JM: Two cases of severe neonatal hypertrophic
cardiomyopathy caused by compound heterozygous mutations in the
MYBPC3 gene. J Med Genet. 43:829–832. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ho CY: Genetics and clinical destiny:
improving care in hyper-trophic cardiomyopathy. Circulation.
122:2430–2440. 2010. View Article : Google Scholar
|
46
|
Anan R, Greve G, Thierfelder L, Watkins H,
McKenna WJ, Solomon S, Vecchio C, Shono H, Nakao S and Tanaka H:
Prognostic implications of novel beta cardiac myosin heavy chain
gene mutations that cause familial hypertrophic cardiomyopathy. J
Clin Invest. 93:280–285. 1994. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang BL, Xu RL, Zhang J, Zhao XX, Wu H,
Ma LP, Hu JQ, Zhang JL, Ye Z, Zheng X and Qin YW: Identification
and functional analysis of a novel PRKAG2 mutation responsible for
Chinese PRKAG2 cardiac syndrome reveal an important role of non-CBS
domains in regulating the AMPK pathway. J Cardiol. 62:241–248.
2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Van Driest SL, Vasile VC, Ommen SR, Will
ML, Tajik AJ, Gersh BJ and Ackerman MJ: Myosin binding protein C
mutations and compound heterozygosity in hypertrophic
cardiomyopathy. J Am Coll Cardiol. 44:1903–1910. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhao Y, Feng Y, Zhang YM, Ding XX, Song
YZ, Zhang AM, Liu L, Zhang H, Ding JH and Xia XS: Targeted
next-generation sequencing reveals hot spots and doubly
heterozygous mutations in Chinese patients with familial
cardiomyopathy. BioMed Res Int. 2015:5618192015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Brisca G, Fiorillo C, Nesti C, Trucco F,
Derchi M, Andaloro A, Assereto S, Morcaldi G, Pedemonte M, Minetti
C, et al: Early onset cardiomyopathy associated with the
mitochondrial tRNALeu((UUR)) 3271T>C MELAS mutation. Biochem
Biophys Res Commun. 458:601–604. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang AL, Kong DH, Chen DX, Wan J and Yu
YX: Mutation of V896M in cardiac myosin binding protein-c gene in
two Chinese families with hypertrophic cardiomyopathy. Mol Med Rep.
3:759–763. 2010.
|
52
|
Millat G, Chanavat V and Rousson R:
Evaluation of a new NGS method based on a custom AmpliSeq library
and Ion Torrent PGM sequencing for the fast detection of genetic
variations in cardiomyopathies. Clin Chim Acta. 433:266–271. 2014.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Glotov AS, Kazakov SV, Zhukova EA,
Alexandrov AV, Glotov OS, Pakin VS, Danilova MM, Poliakova IV,
Niyazova SS, Chakova NN, et al: Targeted next-generation sequencing
(NGS) of nine candidate genes with custom AmpliSeq in patients and
a cardiomyopathy risk group. Clin Chim Acta. 446:132–140. 2015.
View Article : Google Scholar : PubMed/NCBI
|