FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review)
- Authors:
- Masaru Katoh
-
Affiliations: Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan - Published online on: May 31, 2016 https://doi.org/10.3892/ijmm.2016.2620
- Pages: 3-15
-
Copyright: © Katoh . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lemmon MA and Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell. 141:1117–1134. 2010. View Article : Google Scholar : PubMed/NCBI | |
Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S: The protein kinase complement of the human genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 79:34–74. 2014. View Article : Google Scholar | |
Rugo HS, Herbst RS, Liu G, Park JW, Kies MS, Steinfeldt HM, Pithavala YK, Reich SD, Freddo JL and Wilding G: Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: Pharmacokinetic and clinical results. J Clin Oncol. 23:5474–5483. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, et al: Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 10:2298–2308. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marsilje TH, Pei W, Chen B, Lu W, Uno T, Jin Y, Jiang T, Kim S, Li N, Warmuth M, et al: Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl) pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J Med Chem. 56:5675–5690. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung PP, Pairish M, Jia L, Meng J, Funk L, Botrous I, et al: Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 54:6342–6363. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K, Minoshima Y, Iwata M and Funahashi Y: Antitumor activity of lenvatinib (e7080): An angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014:6387472014. View Article : Google Scholar : PubMed/NCBI | |
O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang WS, Xu Q, et al: AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 16:401–412. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH and Zopf D: Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 129:245–255. 2011. View Article : Google Scholar | |
Chow LQ and Eckhardt SG: Sunitinib: From rational design to clinical efficacy. J Clin Oncol. 25:884–896. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wells SA Jr, Gosnell JE, Gagel RF, Moley J, Pfister D, Sosa JA, Skinner M, Krebs A, Vasselli J and Schlumberger M: Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol. 28:767–772. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eswarakumar VP, Lax I and Schlessinger J: Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16:139–149. 2005. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Nakagama H: FGF receptors: Cancer biology and therapeutics. Med Res Rev. 34:280–300. 2014. View Article : Google Scholar | |
Coleman SJ, Bruce C, Chioni AM, Kocher HM and Grose RP: The ins and outs of fibroblast growth factor receptor signalling. Clin Sci (Lond). 127:217–231. 2014. View Article : Google Scholar | |
Ornitz DM and Itoh N: The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 4:215–266. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol. 129:1861–1867. 2009. View Article : Google Scholar : PubMed/NCBI | |
Turner N and Grose R: Fibroblast growth factor signalling: From development to cancer. Nat Rev Cancer. 10:116–129. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kelleher FC, O'Sullivan H, Smyth E, McDermott R and Viterbo A: Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis. 34:2198–2205. 2013. View Article : Google Scholar : PubMed/NCBI | |
Helsten T, Schwaederle M and Kurzrock R: Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: Biologic and clinical implications. Cancer Metastasis Rev. 34:479–496. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brooks AN, Kilgour E and Smith PD: Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res. 18:1855–1862. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang J, Liu X, Wang S, Zhang Z, Wu Z, Zhang X and Li J: Prognostic value of FGFR gene amplification in patients with different types of cancer: A systematic review and meta-analysis. PLoS One. 9:e1055242014. View Article : Google Scholar : PubMed/NCBI | |
Parker BC and Zhang W: Fusion genes in solid tumors: An emerging target for cancer diagnosis and treatment. Chin J Cancer. 32:594–603. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Zhou L, Nice EC and Huang C: Fibroblast growth factor receptors: Multifactorial-contributors to tumor initiation and progression. Histol Histopathol. 30:13–31. 2015. | |
Liang G, Chen G, Wei X, Zhao Y and Li X: Small molecule inhibition of fibroblast growth factor receptors in cancer. Cytokine Growth Factor Rev. 24:467–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
André F and Cortés J: Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat. 150:1–8. 2015. View Article : Google Scholar : PubMed/NCBI | |
Porta C, Giglione P, Liguigli W and Paglino C: Dovitinib (CHIR258, TKI258): Structure, development and preclinical and clinical activity. Future Oncol. 11:39–50. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carter EP, Fearon AE and Grose RP: Careless talk costs lives: Fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol. 25:221–233. 2015. View Article : Google Scholar | |
Chang J, Wang S, Zhang Z, Liu X, Wu Z, Geng R, Ge X, Dai C, Liu R, Zhang Q, et al: Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer. Oncotarget. 6:2009–2022. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Mikse O, Liao RG, Li Y, Tan L, Janne PA, Gray NS, Wong KK and Hammerman PS: Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 34:2167–2177. 2015. View Article : Google Scholar | |
Ronca R, Giacomini A, Rusnati M and Presta M: The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert. Opin Ther Targets. 19:1361–1377. 2015. View Article : Google Scholar | |
Salazar L, Kashiwada T, Krejci P, Meyer AN, Casale M, Hallowell M, Wilcox WR, Donoghue DJ and Thompson LM: Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer. PLoS One. 9:e864702014. View Article : Google Scholar | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, Ullrich RT, Menon R, Maier S, Soltermann A, et al: Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2:62ra932010. View Article : Google Scholar : PubMed/NCBI | |
Cihoric N, Savic S, Schneider S, Ackermann I, Bichsel-Naef M, Schmid RA, Lardinois D, Gugger M, Bubendorf L, Zlobec I, et al: Prognostic role of FGFR1 amplification in early-stage non-small cell lung cancer. Br J Cancer. 110:2914–2922. 2014. View Article : Google Scholar : PubMed/NCBI | |
Preusser M, Berghoff AS, Berger W, Ilhan-Mutlu A, Dinhof C, Widhalm G, Dieckmann K, Wöhrer A, Hackl M, von Deimling A, et al: High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer. 83:83–89. 2014. View Article : Google Scholar | |
Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, et al: The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22:2109–2119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, et al: Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3:636–647. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tanizaki J, Ercan D, Capelletti M, Dodge M, Xu C, Bahcall M, Tricker EM, Butaney M, Calles A, Sholl LM, et al: Identification of oncogenic and drug-sensitizing mutations in the extracellular domain of FGFR2. Cancer Res. 75:3139–3146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maxmen A: The hard facts. Nature. 485:S50–S51. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ellis MJ and Perou CM: The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov. 3:27–34. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khoo BL, Lee SC, Kumar P, Tan TZ, Warkiani ME, Ow SG, Nandi S, Lim CT and Thiery JP: Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy. Oncotarget. 6:15578–15593. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al: Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 345:216–220. 2014. View Article : Google Scholar : PubMed/NCBI | |
André F, Bachelot T, Commo F, Campone M, Arnedos M, Dieras V, Lacroix-Triki M, Lacroix L, Cohen P, Gentien D, et al: Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: A multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 15:267–274. 2014. View Article : Google Scholar : PubMed/NCBI | |
Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, Natrajan R, Marchio C, Iorns E, Mackay A, et al: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70:2085–2094. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C and Lunet N: Worldwide trends in gastric cancer mortality 1980–2011 with predictions to 2015, and incidence by subtype. Eur J Cancer. 50:1330–1344. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, Weigman VJ, Lebowitz PF and Kumar R: Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med. 9:1192011. View Article : Google Scholar : PubMed/NCBI | |
Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, Zhang S, Lee M, Wu J, Lim KH, et al: A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 61:673–684. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jung EJ, Jung EJ, Min SY, Kim MA and Kim WH: Fibroblast growth factor receptor 2 gene amplification status and its clinicopathologic significance in gastric carcinoma. Hum Pathol. 43:1559–1566. 2012. View Article : Google Scholar : PubMed/NCBI | |
Su X, Zhan P, Gavine PR, Morgan S, Womack C, Ni X, Shen D, Bang YJ, Im SA, Ho Kim W, et al: FGFR2 amplification has prognostic significance in gastric cancer: Results from a large international multicentre study. Br J Cancer. 110:967–975. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Su X, Zhang L, Yin X, Tang L, Zhang X, Xu Y, Gao Z, Liu K, Zhou M, et al: FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res. 19:2572–2583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhang L, Fan S, Zhang M, Fu H, Liu Y, Yin X, Chen H, Xie L, Zhang J, et al: Patient-derived gastric carcinoma xenograft mouse models faithfully represent human tumor molecular diversity. PLoS One. 10:e01344932015. View Article : Google Scholar : PubMed/NCBI | |
Agelopoulos K, Richter GH, Schmidt E, Dirksen U, von Heyking K, Moser B, Klein HU, Kontny U, Dugas M, Poos K, et al: Deep sequencing in conjunction with expression and functional analyses reveals activation of FGFR1 in Ewing sarcoma. Clin Cancer Res. 21:4935–4946. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reintjes N, Li Y, Becker A, Rohmann E, Schmutzler R and Wollnik B: Activating somatic FGFR2 mutations in breast cancer. PLoS One. 8:e602642013. View Article : Google Scholar : PubMed/NCBI | |
Byron SA, Gartside M, Powell MA, Wellens CL, Gao F, Mutch DG, Goodfellow PJ and Pollock PM: FGFR2 point mutations in 466 endometrioid endometrial tumors: Relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One. 7:e308012012. View Article : Google Scholar : PubMed/NCBI | |
Ross JS, Wang K, Al-Rohil RN, Nazeer T, Sheehan CE, Otto GA, He J, Palmer G, Yelensky R, Lipson D, et al: Advanced urothelial carcinoma: Next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod Pathol. 27:271–280. 2014. View Article : Google Scholar | |
Gartside MG, Chen H, Ibrahimi OA, Byron SA, Curtis AV, Wellens CL, Bengston A, Yudt LM, Eliseenkova AV, Ma J, et al: Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res. 7:41–54. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koika V, Varnavas P, Valavani H, Sidis Y, Plummer L, Dwyer A, Quinton R, Kanaka-Gantenbein C, Pitteloud N, Sertedaki A, et al: Comparative functional analysis of two fibroblast growth factor receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in isolated hypogonadotropic hypogonadism (IHH). Gene. 516:146–151. 2013. View Article : Google Scholar : PubMed/NCBI | |
Villanueva C, Jacobson-Dickman E, Xu C, Manouvrier S, Dwyer AA, Sykiotis GP, Beenken A, Liu Y, Tommiska J, Hu Y, et al: Congenital hypogonadotropic hypogonadism with split hand/foot malformation: A clinical entity with a high frequency of FGFR1 mutations. Genet Med. 17:651–659. 2015. View Article : Google Scholar : | |
Jackson CC, Medeiros LJ and Miranda RN: 8p11 myeloproliferative syndrome: A review. Hum Pathol. 41:461–476. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kumar KR, Chen W, Koduru PR and Luu HS: Myeloid and lymphoid neoplasm with abnormalities of FGFR1 presenting with trilineage blasts and RUNX1 rearrangement: A case report and review of literature. Am J Clin Pathol. 143:738–748. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yagasaki F, Wakao D, Yokoyama Y, Uchida Y, Murohashi I, Kayano H, Taniwaki M, Matsuda A and Bessho M: Fusion of ETV6 to fibroblast growth factor receptor 3 in peripheral T-cell lymphoma with a t(4;12)(p16;p13) chromosomal translocation. Cancer Res. 61:8371–8374. 2001.PubMed/NCBI | |
Ren M, Qin H, Kitamura E and Cowell JK: Dysregulated signaling pathways in the development of CNTRL-FGFR1-induced myeloid and lymphoid malignancies associated with FGFR1 in human and mouse models. Blood. 122:1007–1016. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, Orisme W, Punchihewa C, Parker M, Qaddoumi I, et al: St Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project: Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 45:602–612. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sia D, Losic B, Moeini A, Cabellos L, Hao K, Revill K, Bonal D, Miltiadous O, Zhang Z, Hoshida Y, et al: Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun. 6:60872015. View Article : Google Scholar : PubMed/NCBI | |
Gavine PR, Mooney L, Kilgour E, Thomas AP, Al-Kadhimi K, Beck S, Rooney C, Coleman T, Baker D, Mellor MJ, et al: AZD4547: An orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 72:2045–2056. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kwak Y, Cho H, Hur W and Sim T: Antitumor effects and mechanisms of AZD4547 on FGFR2-deregulated endometrial cancer cells. Mol Cancer Ther. 14:2292–2302. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guagnano V, Kauffmann A, Wöhrle S, Stamm C, Ito M, Barys L, Pornon A, Yao Y, Li F, Zhang Y, et al: FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2:1118–1133. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hagel M, Miduturu C, Sheets M, Rubin N, Weng W, Stransky N, Bifulco N, Kim JL, Hodous B, Brooijmans N, et al: First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 5:424–437. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi Y, Akiyama N, Tsukaguchi T, Fujii T, Sakata K, Sase H, Isobe T, Morikami K, Shindoh H, Mio T, et al: The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol Cancer Ther. 13:2547–2558. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Lopes de Menezes D, Vora J, Harris A, Ye H, Nordahl L, Garrett E, Samara E, Aukerman SL, Gelb AB, et al: In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin Cancer Res. 11:3633–3641. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, Zhu SJ, Zhang Y, Ercan D, Liao RG, et al: Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci USA. 111:E4869–E4877. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tabernero J, Bahleda R, Dienstmann R, Infante JR, Mita A, Italiano A, Calvo E, Moreno V, Adamo B, Gazzah A, et al: Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 33:3401–3408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao G, Li WY, Chen D, Henry JR, Li HY, Chen Z, Zia-Ebrahimi M, Bloem L, Zhai Y, Huss K, et al: A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther. 10:2200–2210. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shah RR and Morganroth J: Update on cardiovascular safety of tyrosine kinase inhibitors: With a special focus on QT interval, left ventricular dysfunction and overall risk/benefit. Drug Saf. 38:693–710. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gacche RN and Meshram RJ: Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta. 1846:161–179. 2014.PubMed/NCBI | |
Douxfils J, Haguet H, Mullier F, Chatelain C, Graux C and Dogné JM: Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: A systematic review and meta-analysis. JAMA Oncol. Feb 4–2016.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Junttila MR and de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Procopio MG, Laszlo C, Al Labban D, Kim DE, Bordignon P, Jo SH, Goruppi S, Menietti E, Ostano P, Ala U, et al: Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat Cell Biol. 17:1193–1204. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, Cummings CT, Graham DK, Astling D, Tan AC, et al: A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis. 2:e392013. View Article : Google Scholar : PubMed/NCBI | |
Suvannasankha A, Tompkins DR, Edwards DF, Petyaykina KV, Crean CD, Fournier PG, Parker JM, Sandusky GE, Ichikawa S, Imel EA, et al: FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget. 6:19647–19660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bridges E, Oon CE and Harris A: Notch regulation of tumor angiogenesis. Future Oncol. 7:569–588. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 32:763–767. 2013.PubMed/NCBI | |
Schmitt J and Matei D: Targeting angiogenesis in ovarian cancer. Cancer Treat Rev. 38:272–283. 2012. View Article : Google Scholar | |
Goel HL and Mercurio AM: VEGF targets the tumour cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oladipupo SS, Smith C, Santeford A, Park C, Sene A, Wiley LA, Osei-Owusu P, Hsu J, Zapata N, Liu F, et al: Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc Natl Acad Sci USA. 111:13379–13384. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Yang S, Hao J, Yuan X, Luo W, Jiang L, Hu Y, Fu Z, Zhang Y and Zou C: Endostar attenuates melanoma tumor growth via its interruption of b-FGF mediated angiogenesis. Cancer Lett. 359:148–154. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi HJ, Armaiz Pena GN, Pradeep S, Cho MS, Coleman RL and Sood AK: Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Rev. 34:19–40. 2015. View Article : Google Scholar : | |
Hilbert T and Klaschik S: The angiopoietin/TIE receptor system: Focusing its role for ischemia-reperfusion injury. Cytokine Growth Factor Rev. 26:281–291. 2015. View Article : Google Scholar | |
Fagiani E and Christofori G: Angiopoietins in angiogenesis. Cancer Lett. 328:18–26. 2013. View Article : Google Scholar | |
Zhou W, Wang G and Guo S: Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells. Biochim Biophys Acta. 1836:304–320. 2013.PubMed/NCBI | |
Rostama B, Peterson SM, Vary CP and Liaw L: Notch signal integration in the vasculature during remodeling. Vascul Pharmacol. 63:97–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Yan X, Chen Y, Yang Z and Han H: Notch signaling in blood vessels: From morphogenesis to homeostasis. Sci China Life Sci. 57:774–780. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bertolini F, Marighetti P, Martin-Padura I, Mancuso P, Hu-Lowe DD, Shaked Y and D'Onofrio A: Anti-VEGF and beyond: Shaping a new generation of anti-angiogenic therapies for cancer. Drug Discov Today. 16:1052–1060. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI | |
Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A and Sica A: Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol. 22:231–237. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi S, Miyara M, Costantino CM and Hafler DA: FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 10:490–500. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balkwill FR: The chemokine system and cancer. J Pathol. 226:148–157. 2012. View Article : Google Scholar | |
Lippitz BE: Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol. e218–e228. 2013. View Article : Google Scholar : PubMed/NCBI | |
Condamine T, Ramachandran I, Youn JI and Gabrilovich DI: Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 66:97–110. 2015. View Article : Google Scholar : | |
Rivera LB and Bergers G: Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol. 36:240–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP, et al: CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 61:1591–1602. 2015. View Article : Google Scholar : | |
Holdman XB, Welte T, Rajapakshe K, Pond A, Coarfa C, Mo Q, Huang S, Hilsenbeck SG, Edwards DP, Zhang X, et al: Upregulation of EGFR signaling is correlated with tumor stroma remodeling and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Res. 17:1412015. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Ye TH, Han YP, Song H, Zhang YK, Xia Y, Wang NY, Xiong Y, Song XJ, Zhu YX, et al: Reductions in myeloid-derived suppressor cells and lung metastases using AZD4547 treatment of a metastatic murine breast tumor model. Cell Physiol Biochem. 33:633–645. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hume DA and MacDonald KP: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 119:1810–1820. 2012. View Article : Google Scholar | |
Sieweke MH and Allen JE: Beyond stem cells: Self-renewal of differentiated macrophages. Science. 342:12429742013. View Article : Google Scholar : PubMed/NCBI | |
Hamilton JA and Achuthan A: Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 34:81–89. 2013. View Article : Google Scholar | |
Moughon DL, He H, Schokrpur S, Jiang ZK, Yaqoob M, David J, Lin C, Iruela-Arispe ML, Dorigo O and Wu L: Macrophage blockade using CSF1R inhibitors reverses the vascular leakage underlying malignant ascites in late-stage epithelial ovarian cancer. Cancer Res. 75:4742–4752. 2015. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W and Wu L: CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73:2782–2794. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, et al: Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 25:846–859. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E and Bergers G: Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep. 11:577–591. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beenken A and Mohammadi M: The FGF family: Biology, pathophysiology and therapy. Nat Rev Drug Discov. 8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI | |
Degirolamo C, Sabbà C and Moschetta A: Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov. 15:51–69. 2016. View Article : Google Scholar | |
Liu WY, Xie DM, Zhu GQ, Huang GQ, Lin YQ, Wang LR, Shi KQ, Hu B, Braddock M, Chen YP, et al: Targeting fibroblast growth factor 19 in liver disease: A potential biomarker and therapeutic target. Expert. Opin Ther Targets. 19:675–685. 2015. View Article : Google Scholar | |
Pai R, French D, Ma N, Hotzel K, Plise E, Salphati L, Setchell KD, Ware J, Lauriault V, Schutt L, et al: Antibody-mediated inhibition of fibroblast growth factor 19 results in increased bile acids synthesis and ileal malabsorption of bile acids in cynomolgus monkeys. Toxicol Sci. 126:446–456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ge H, Zhang J, Gong Y, Gupte J, Ye J, Weiszmann J, Samayoa K, Coberly S, Gardner J, Wang H, et al: Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions. J Biol Chem. 289:30470–30480. 2014. View Article : Google Scholar : PubMed/NCBI | |
Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, Stubbs JR and Wacker MJ: FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab. 307:E426–E436. 2014. View Article : Google Scholar : PubMed/NCBI | |
Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, et al: Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 22:1020–1032. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wynes MW, Hinz TK, Gao D, Martini M, Marek LA, Ware KE, Edwards MG, Böhm D, Perner S, Helfrich BA, et al: FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies. Clin Cancer Res. 20:3299–3309. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wöhrle S, Weiss A, Ito M, Kauffmann A, Murakami M, Jagani Z, Thuery A, Bauer-Probst B, Reimann F, Stamm C, et al: Fibroblast growth factor receptors as novel therapeutic targets in SNF5-deleted malignant rhabdoid tumors. PLoS One. 8:e776522013. View Article : Google Scholar : PubMed/NCBI | |
Künstlinger H, Fassunke J, Schildhaus HU, Brors B, Heydt C, Ihle MA, Mechtersheimer G, Wardelmann E, Büttner R and Merkelbach-Bruse S: FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro. Oncotarget. 6:20215–20230. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, Seth S, Chow CW, Cao Y, Gumbs C, et al: Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 346:256–259. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, Sausen M, Phallen J, Hruban CA, Tokheim C, et al: The genomic landscape of response to EGFR blockade in colorectal cancer. Nature. 526:263–267. 2015. View Article : Google Scholar : PubMed/NCBI | |
Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, et al: Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 346:1480–1486. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chell V, Balmanno K, Little AS, Wilson M, Andrews S, Blockley L, Hampson M, Gavine PR and Cook SJ: Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene. 32:3059–3070. 2013. View Article : Google Scholar | |
Ang D, Ballard M, Beadling C, Warrick A, Schilling A, O'Gara R, Pukay M, Neff TL, West RB, Corless CL, et al: Novel mutations in neuroendocrine carcinoma of the breast: Possible therapeutic targets. Appl Immunohistochem Mol Morphol. 23:97–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Okazaki T and Honjo T: PD-1 and PD-1 ligands: From discovery to clinical application. Int Immunol. 19:813–824. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mahoney KM, Rennert PD and Freeman GJ: Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 14:561–584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hovelson DH, McDaniel AS, Cani AK, Johnson B, Rhodes K, Williams PD, Bandla S, Bien G, Choppa P, Hyland F, et al: Development and validation of a scalable next-generation sequencing. |