1
|
Donnan GA, Fisher M, Macleod M and Davis
SM: Stroke. Lancet. 371:1612–1623. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen H, Yoshioka H, Kim GS, Jung JE, Okami
N, Sakata H, Maier CM, Narasimhan P, Goeders CE and Chan PH:
Oxidative stress in ischemic brain damage: mechanisms of cell death
and potential molecular targets for neuroprotection. Antioxid Redox
Signal. 14:1505–1517. 2011. View Article : Google Scholar :
|
3
|
Schmidt-Kastner R and Freund TF: Selective
vulnerability of the hippocampus in brain ischemia. Neuroscience.
40:599–636. 1991. View Article : Google Scholar : PubMed/NCBI
|
4
|
Christophe M and Nicolas S: Mitochondria:
a target for neuro-protective interventions in cerebral
ischemia-reperfusion. Curr Pharm Des. 12:739–757. 2006. View Article : Google Scholar
|
5
|
Turrens JF: Mitochondrial formation of
reactive oxygen species. J Physiol. 552:335–344. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Radermacher KA, Wingler K, Langhauser F,
Altenhöfer S, Kleikers P, Hermans JJ, Hrabě de Angelis M,
Kleinschnitz C and Schmidt HH: Neuroprotection after stroke by
targeting NOX4 as a source of oxidative stress. Antioxid Redox
Signal. 18:1418–1427. 2013. View Article : Google Scholar :
|
7
|
Rui C, Yuxiang L, Yinju H, Qingluan Z,
Yang W, Qipeng Z, Hao W, Lin M, Juan L, Chengjun Z, et al:
Protective effects of Lycium barbarum polysaccharide on neonatal
rat primary cultured hippocampal neurons injured by oxygen-glucose
deprivation and reperfusion. J Mol Histol. 43:535–542. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Scalbert A and Williamson G: Dietary
intake and bioavailability of polyphenols. J Nutr. 130(8S Suppl):
2073S–2085S. 2000.PubMed/NCBI
|
9
|
Güven M, Aras AB, Topaloğlu N, Özkan A,
Şen HM, Kalkan Y, Okuyucu A, Akbal A, Gökmen F and Coşar M: The
protective effect of syringic acid on ischemia injury in rat brain.
Turk J Med Sci. 45:233–240. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kumar S, Prahalathan P and Raja B:
Syringic acid ameliorates (L)-NAME-induced hypertension by reducing
oxidative stress. Naunyn Schmiedebergs Arch Pharmacol.
385:1175–1184. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cikman O, Soylemez O, Ozkan OF, Kiraz HA,
Sayar I, Ademoglu S, Taysi S and Karaayvaz M: Antioxidant activity
of syringic acid prevents oxidative stress in L-arginine-induced
acute pancreatitis: an experimental study on rats. Int Surg.
100:891–896. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tokmak M, Yuksel Y, Sehitoglu MH, Guven M,
Akman T, Aras AB, Cosar M and Abbed KM: The neuroprotective effect
of syringic acid on spinal cord ischemia/reperfusion injury in
rats. Inflammation. 38:1969–1978. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kazda S and Towart R: Nimodipine: a new
calcium antagonistic drug with a preferential cerebrovascular
action. Acta Neurochir (Wien). 63:259–265. 1982. View Article : Google Scholar
|
14
|
Scriabine A and van den Kerckhoff W:
Pharmacology of nimodipine. A review. Ann N Y Acad Sci.
522:698–706. 1988. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wadworth AN and McTavish D: Nimodipine. A
review of its pharmacological properties, and therapeutic efficacy
in cerebral disorders. Drugs Aging. 2:262–286. 1992. View Article : Google Scholar : PubMed/NCBI
|
16
|
Krohn AJ, Preis E and Prehn JH:
Staurosporine-induced apoptosis of cultured rat hippocampal neurons
involves caspase-1-like proteases as upstream initiators and
increased production of superoxide as a main downstream effector. J
Neurosci. 18:8186–8197. 1998.PubMed/NCBI
|
17
|
McCord JM and Fridovich I: Superoxide
dismutase. An enzymic function for erythrocuprein (hemocuprein). J
Biol Chem. 244:6049–6055. 1969.PubMed/NCBI
|
18
|
Gwag BJ, Lobner D, Koh JY, Wie MB and Choi
DW: Blockade of glutamate receptors unmasks neuronal apoptosis
after oxygen-glucose deprivation in vitro. Neuroscience.
68:615–619. 1995. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ohkawa H, Ohishi N and Yagi K: Assay for
lipid peroxides in animal tissues by thiobarbituric acid reaction.
Anal Biochem. 95:351–358. 1979. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wu W, Xia Q, Luo RJ, Lin ZQ and Xue P: In
vitro study of the antagonistic effect of low-dose liquiritigenin
on gemcitabine-induced capillary leak syndrome in pancreatic
adenocarcinoma via inhibiting ROS-mediated signalling pathways.
Asian Pac J Cancer Prev. 16:4369–4376. 2015. View Article : Google Scholar
|
21
|
Reers M, Smith TW and Chen LB: J-aggregate
formation of a carbocyanine as a quantitative fluorescent indicator
of membrane potential. Biochemistry. 30:4480–4486. 1991. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhu XJ, Shi Y, Peng J, Guo CS, Shan NN,
Qin P, Ji XB and Hou M: The effects of BAFF and BAFF-R-Fc fusion
protein in immune thrombocytopenia. Blood. 114:5362–5367. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Margaill I, Plotkine M and Lerouet D:
Antioxidant strategies in the treatment of stroke. Free Radic Biol
Med. 39:429–443. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun J, Li YZ, Ding YH, Wang J, Geng J,
Yang H, Ren J, Tang JY and Gao J: Neuroprotective effects of gallic
acid against hypoxia/reoxygenation-induced mitochondrial
dysfunctions in vitro and cerebral ischemia/reperfusion injury in
vivo. Brain Res. 1589:126–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang C, Zhang Z, Zhao Q, Wang X, Ji H and
Zhang Y: (S)-ZJM-289 preconditioning induces a late phase
protection against nervous injury induced by transient cerebral
ischemia and oxygen-glucose deprivation. Neurotox Res. 26:16–31.
2014. View Article : Google Scholar
|
26
|
Ma NT, Zhou R, Chang RY, Hao YJ, Ma L, Jin
SJ, Du J, Zheng J, Zhao CJ, Niu Y, et al: Protective effects of
aloperine on neonatal rat primary cultured hippocampal neurons
injured by oxygen-glucose deprivation and reperfusion. J Nat Med.
69:575–583. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Itoh A, Isoda K, Kondoh M, Kawase M,
Watari A, Kobayashi M, Tamesada M and Yagi K: Hepatoprotective
effect of syringic acid and vanillic acid on CCl4-induced liver
injury. Biol Pharm Bull. 33:983–987. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Morton LW, Croft KD, Puddey IB and Byrne
L: Phenolic acids protect low density lipoproteins from
peroxynitrite-mediated modification in vitro. Redox Rep. 5:124–125.
2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Le DA, Wu Y, Huang Z, Matsushita K,
Plesnila N, Augustinack JC, Hyman BT, Yuan J, Kuida K, Flavell RA
and Moskowitz MA: Caspase activation and neuroprotection in
caspase-3-deficient mice after in vivo cerebral ischemia and in
vitro oxygen glucose deprivation. Proc Natl Acad Sci USA.
99:15188–15193. 2002. View Article : Google Scholar
|
30
|
Nicholson DW: Caspase structure,
proteolytic substrates, and function during apoptotic cell death.
Cell Death Differ. 6:1028–1042. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang SM, Chuang HC, Wu CH and Yen GC:
Cytoprotective effects of phenolic acids on methylglyoxal-induced
apoptosis in Neuro-2A cells. Mol Nutr Food Res. 52:940–949. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Orrenius S, Zhivotovsky B and Nicotera P:
Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol
Cell Biol. 4:552–565. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pieme CA, Santosh GK, Tekwu EM, Askun T,
Aydeniz H, Ngogang JY, Bhushan S and Saxena AK: Fruits and barks
extracts of Zanthoxylum heitzii a spice from Cameroon induce
mitochondrial dependent apoptosis and Go/G1 phase arrest in human
leukemia HL-60 cells. Biol Res. 47:542014. View Article : Google Scholar
|
34
|
Wang CP, Li JL, Zhang LZ, Zhang XC, Yu S,
Liang XM, Ding F and Wang ZW: Isoquercetin protects cortical
neurons from oxygen-glucose deprivation-reperfusion induced injury
via suppression of TLR4-NF-κB signal pathway. Neurochem Int.
63:741–749. 2013. View Article : Google Scholar : PubMed/NCBI
|