1
|
Katagiri T and Takahashi N: Regulatory
mechanisms of osteoblast and osteoclast differentiation. Oral Dis.
8:147–159. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Heino TJ and Hentunen TA: Differentiation
of osteoblasts and osteocytes from mesenchymal stem cells. Curr
Stem Cell Res Ther. 3:131–145. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Teitelbaum SL: Bone remodeling and the
osteoclast. J Bone Miner Res. 8(Suppl 2): S523–S525. 1993.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kawamura N, Kugimiya F, Oshima Y, Ohba S,
Ikeda T, Saito T, Shinoda Y, Kawasaki Y, Ogata N, Hoshi K, et al:
Akt1 in osteo-blasts and osteoclasts controls bone remodeling. PLoS
One. 2:e10582007. View Article : Google Scholar
|
5
|
Blum B, Moseley J, Miller L, Richelsoph K
and Haggard W: Measurement of bone morphogenetic proteins and other
growth factors in demineralized bone matrix. Orthopedics. 27(Suppl
1): s161–s165. 2004.PubMed/NCBI
|
6
|
Yamaguchi A, Komori T and Suda T:
Regulation of osteoblast differentiation mediated by bone
morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev.
21:393–411. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ohba S, Chung UI and Tei Y: Osteoblast
differentiation induced by BMP signaling and Runx2 through Cbfb
regulation. Nihon Rinsho. 65(Suppl 9): 71–74. 2007.In Japanese.
|
8
|
Matsubara T, Kida K, Yamaguchi A, Hata K,
Ichida F, Meguro H, Aburatani H, Nishimura R and Yoneda T: BMP2
regulates Osterix through Msx2 and Runx2 during osteoblast
differentiation. J Biol Chem. 283:29119–29125. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ulsamer A, Ortuño MJ, Ruiz S, Susperregui
AR, Osses N, Rosa JL and Ventura F: BMP-2 induces Osterix
expression through up-regulation of Dlx5 and its phosphorylation by
p38. J Biol Chem. 283:3816–3826. 2008. View Article : Google Scholar
|
10
|
Komori T: Regulation of osteoblast
differentiation by transcription factors. J Cell Biochem.
99:1233–1239. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lee MH, Kwon TG, Park HS, Wozney JM and
Ryoo HM: BMP-2-induced Osterix expression is mediated by Dlx5 but
is independent of Runx2. Biochem Biophys Res Commun. 309:689–694.
2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Komori T, Yagi H, Nomura S, Yamaguchi A,
Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al:
Targeted disruption of Cbfa1 results in a complete lack of bone
formation owing to maturational arrest of osteoblasts. Cell.
89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bendall AJ and Abate-Shen C: Roles for Msx
and Dlx homeoproteins in vertebrate development. Gene. 247:17–31.
2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hassan MQ, Javed A, Morasso MI, Karlin J,
Montecino M, van Wijnen AJ, Stein GS, Stein JL and Lian JB: Dlx3
transcriptional regulation of osteoblast differentiation: temporal
recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to
chromatin of the osteocalcin gene. Mol Cell Biol. 24:9248–9261.
2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nakashima K, Zhou X, Kunkel G, Zhang Z,
Deng JM, Behringer RR and de Crombrugghe B: The novel zinc
finger-containing transcription factor osterix is required for
osteoblast differentiation and bone formation. Cell. 108:17–29.
2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li H, Marijanovic I, Kronenberg MS, Erceg
I, Stover ML, Velonis D, Mina M, Heinrich JG, Harris SE, Upholt WB,
et al: Expression and function of Dlx genes in the osteoblast
lineage. Dev Biol. 316:458–470. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Komori T: Regulation of skeletal
development by the Runx family of transcription factors. J Cell
Biochem. 95:445–453. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cheng A and Genever PG: SOX9 determines
RUNX2 transactivity by directing intracellular degradation. J Bone
Miner Res. 25:2680–2689. 2010. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Stein GS, Lian JB, van Wijnen AJ, Stein
JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY and Pockwinse
SM: Runx2 control of organization, assembly and activity of the
regulatory machinery for skeletal gene expression. Oncogene.
23:4315–4329. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C,
Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM and Bae SC: Runx2 is
a common target of transforming growth factor beta1 and bone
morphogenetic protein 2, and cooperation between Runx2 and Smad5
induces osteoblast-specific gene expression in the pluripotent
mesenchymal precursor cell line C2C12. Mol Cell Biol. 20:8783–8792.
2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mukherjee A and Rotwein P: Akt promotes
BMP2-mediated osteoblast differentiation and bone development. J
Cell Sci. 122:716–726. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Phimphilai M, Zhao Z, Boules H, Roca H and
Franceschi RT: BMP signaling is required for RUNX2-dependent
induction of the osteoblast phenotype. J Bone Miner Res.
21:637–646. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Javed A, Afzal F, Bae JS, Gutierrez S,
Zaidi K, Pratap J, van Wijnen AJ, Stein JL, Stein GS and Lian JB:
Specific residues of RUNX2 are obligatory for formation of
BMP2-induced RUNX2-SMAD complex to promote osteoblast
differentiation. Cells Tissues Organs. 189:133–137. 2009.
View Article : Google Scholar :
|
24
|
Fu H, Doll B, McNelis T and Hollinger JO:
Osteoblast differentiation in vitro and in vivo promoted by
Osterix. J Biomed Mater Res A. 83:770–778. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tu Q, Valverde P and Chen J: Osterix
enhances proliferation and osteogenic potential of bone marrow
stromal cells. Biochem Biophys Res Commun. 341:1257–1265. 2006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim YJ, Kim HN, Park EK, Lee BH, Ryoo HM,
Kim SY, Kim IS, Stein JL, Lian JB, Stein GS, et al: The
bone-related Zn finger transcription factor Osterix promotes
proliferation of mesenchymal cells. Gene. 366:145–151. 2006.
View Article : Google Scholar
|
27
|
Hatta M, Yoshimura Y, Deyama Y, Fukamizu A
and Suzuki K: Molecular characterization of the zinc finger
transcription factor, Osterix. Int J Mol Med. 17:425–430.
2006.PubMed/NCBI
|
28
|
Zhang C, Cho K, Huang Y, Lyons JP, Zhou X,
Sinha K, McCrea PD and de Crombrugghe B: Inhibition of Wnt
signaling by the osteoblast-specific transcription factor Osterix.
Proc Natl Acad Sci USA. 105:6936–6941. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
New SA, Robins SP, Campbell MK, Martin JC,
Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ and Reid DM: Dietary
influences on bone mass and bone metabolism: further evidence of a
positive link between fruit and vegetable consumption and bone
health? Am J Clin Nutr. 71:142–151. 2000.PubMed/NCBI
|
30
|
Tucker KL, Hannan MT, Chen H, Cupples LA,
Wilson PW and Kiel DP: Potassium, magnesium, and fruit and
vegetable intakes are associated with greater bone mineral density
in elderly men and women. Am J Clin Nutr. 69:727–736.
1999.PubMed/NCBI
|
31
|
Chen X, Yang L, Zhang N, Turpin JA,
Buckheit RW, Osterling C, Oppenheim JJ and Howard OM: Shikonin, a
component of chinese herbal medicine, inhibits chemokine receptor
function and suppresses human immunodeficiency virus type 1.
Antimicrob Agents Chemother. 47:2810–2816. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gao H, Liu L, Qu ZY, Wei FX, Wang SQ, Chen
G, Qin L, Jiang FY, Wang YC, Shang L and Gao CY: Anti-adenovirus
activities of shikonin, a component of Chinese herbal medicine in
vitro. Biol Pharm Bull. 34:197–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jin R, Wan LL, Mitsuishi T, Kodama K and
Kurashige S: Immunomodulative effects of Chinese herbs in mice
treated with anti-tumor agent cyclophosphamide. Yakugaku Zasshi.
114:533–538. 1994.In Japanese. PubMed/NCBI
|
34
|
Chen HM, Wang PH, Chen SS, Wen CC, Chen
YH, Yang WC and Yang NS: Shikonin induces immunogenic cell death in
tumor cells and enhances dendritic cell-based cancer vaccine.
Cancer Immunol Immunother. 61:1989–2002. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang XC, Feng J, Huang F, Fan YS, Wang YY,
Cao LY and Wen CP: Effects of shikonin isolated from zicao on lupus
nephritis in NZB/W F1 mice. Biol Pharm Bull. 32:1565–1570. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kim SJ, Kim JM, Shim SH and Chang HI:
Shikonin induces cell cycle arrest in human gastric cancer (AGS) by
early growth response 1 (Egr1)-mediated p21 gene expression. J
Ethnopharmacol. 151:1064–1071. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dai Q, Fang J and Zhang FS: Dual role of
shikonin in early and late stages of collagen type II arthritis.
Mol Biol Rep. 36:1597–1604. 2009. View Article : Google Scholar
|
38
|
Kim YO, Hong SJ and Yim SV: The efficacy
of shikonin on cartilage protection in a mouse model of rheumatoid
arthritis. Korean J Physiol Pharmacol. 14:199–204. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Youn YN, Lim E, Lee N, Kim YS, Koo MS and
Choi SY: Screening of Korean medicinal plants for possible
osteoclastogenesis effects in vitro. Genes Nutr. 2:375–380. 2008.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Kotajima S, Kishimoto KN, Watanuki M,
Hatori M and Kokubun S: Gene expression analysis of ectopic bone
formation induced by electroporatic gene transfer of BMP4. Ups J
Med Sci. 111:231–241. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li G, Peng H, Corsi K, Usas A, Olshanski A
and Huard J: Differential effect of BMP4 on NIH/3T3 and C2C12
cells: implications for endochondral bone formation. J Bone Miner
Res. 20:1611–1623. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ou M, Zhao Y, Zhang F and Huang X: Bmp2
and Bmp4 accelerate alveolar bone development. Connect Tissue Res.
56:204–211. 2015. View Article : Google Scholar
|
43
|
Zhang Z, Song Y, Zhang X, Tang J, Chen J
and Chen Y: Msx1/Bmp4 genetic pathway regulates mammalian alveolar
bone formation via induction of Dlx5 and Cbfa1. Mech Dev.
120:1469–1479. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Drissi H, Luc Q, Shakoori R, Chuva De
Sousa Lopes S, Choi JY, Terry A, Hu M, Jones S, Neil JC, Lian JB,
et al: Transcriptional autoregulation of the bone related
CBFA1/RUNX2 gene. J Cell Physiol. 184:341–350. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Thuong PT, Kang KW, Kim JK, Seo DB, Lee
SJ, Kim SH and Oh WK: Lithospermic acid derivatives from
Lithospermum erythrorhizon increased expression of serine
palmitoyltransferase in human HaCaT cells. Bioorg Med Chem Lett.
19:1815–1817. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Konno C, Mizuno T and Hikino H: Isolation
and hypoglycemic activity of lithospermans A, B and C, glycans of
Lithospermum erythrorhizon roots. Planta Med. 51:157–158. 1985.
View Article : Google Scholar
|
47
|
Jin CJ, Yu SH, Wang XM, Woo SJ, Park HJ,
Lee HC, Choi SH, Kim KM, Kim JH, Park KS, et al: The effect of
lithospermic acid, an antioxidant, on development of diabetic
retinopathy in spontaneously obese diabetic rats. PLoS One.
9:e982322014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Liu X, Chen R, Shang Y, Jiao B and Huang
C: Lithospermic acid as a novel xanthine oxidase inhibitor has
anti-inflammatory and hypouricemic effects in rats. Chem Biol
Interact. 176:137–142. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kang ES, Lee GT, Kim BS, Kim CH, Seo GH,
Han SJ, Hur KY, Ahn CW, Ha H, Jung M, et al: Lithospermic acid B
ameliorates the development of diabetic nephropathy in OLETF rats.
Eur J Pharmacol. 579:418–425. 2008. View Article : Google Scholar
|
50
|
Chang MJ, Huang HC, Chang HC and Chang TM:
Cosmetic formulations containing Lithospermum erythrorhizon root
extract show moisturizing effects on human skin. Arch Dermatol Res.
300:317–323. 2008. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kim J and Cho Y: Gromwell (Lithospermum
erythrorhizon) supplementation enhances epidermal levels of
ceramides, glucosylceramides, β-glucocerebrosidase, and acidic
sphingomyelinase in NC/Nga mice. J Med Food. 16:927–933. 2013.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Mundlos S, Otto F, Mundlos C, Mulliken JB,
Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, et
al: Mutations involving the transcription factor CBFA1 cause
cleidocranial dysplasia. Cell. 89:773–779. 1997. View Article : Google Scholar : PubMed/NCBI
|
53
|
Otto F, Thornell AP, Crompton T, Denzel A,
Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen
BR, et al: Cbfa1, a candidate gene for cleidocranial dysplasia
syndrome, is essential for osteoblast differentiation and bone
development. Cell. 89:765–771. 1997. View Article : Google Scholar : PubMed/NCBI
|
54
|
Qiao M, Shapiro P, Kumar R and Passaniti
A: Insulin-like growth factor-1 regulates endogenous RUNX2 activity
in endothelial cells through a phosphatidylinositol
3-kinase/ERK-dependent and Akt-independent signaling pathway. J
Biol Chem. 279:42709–42718. 2004. View Article : Google Scholar : PubMed/NCBI
|
55
|
Xiao G, Jiang D, Gopalakrishnan R and
Franceschi RT: Fibroblast growth factor 2 induction of the
osteocalcin gene requires MAPK activity and phosphorylation of the
osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem.
277:36181–36187. 2002. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kim BG, Kim HJ, Park HJ, Kim YJ, Yoon WJ,
Lee SJ, Ryoo HM and Cho JY: Runx2 phosphorylation induced by
fibroblast growth factor-2/protein kinase C pathways. Proteomics.
6:1166–1174. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ortuño MJ, Ruiz-Gaspà S,
Rodríguez-Carballo E, Susperregui AR, Bartrons R, Rosa JL and
Ventura F: p38 regulates expression of osteoblast-specific genes by
phosphorylation of osterix. J Biol Chem. 285:31985–31994. 2010.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Choi YH, Jeong HM, Jin YH, Li H, Yeo CY
and Lee KY: Akt phosphorylates and regulates the osteogenic
activity of Osterix. Biochem Biophys Res Commun. 411:637–641. 2011.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Choi YH, Han Y, Lee SH, Cheong H, Chun KH,
Yeo CY and Lee KY: Src enhances osteogenic differentiation through
phosphorylation of Osterix. Mol Cell Endocrinol. 407:85–97. 2015.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Öberg AI, Yassin K, Csikasz RI, Dehvari N,
Shabalina IG, Hutchinson DS, Wilcke M, Östenson CG and Bengtsson T:
Shikonin increases glucose uptake in skeletal muscle cells and
improves plasma glucose levels in diabetic Goto-Kakizaki rats. PLoS
One. 6:e225102011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Gwon SY, Ahn JY, Jung CH, Moon BK and Ha
TY: Shikonin suppresses ERK 1/2 phosphorylation during the early
stages of adipocyte differentiation in 3T3-L1 cells. BMC Complement
Altern Med. 13:2072013. View Article : Google Scholar : PubMed/NCBI
|