1
|
Tugal D, Liao X and Jain MK:
Transcriptional control of macrophage polarization. Arterioscler
Thromb Vasc Biol. 33:1135–1144. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lin SL, Li B, Rao S, Yeo EJ, Hudson TE,
Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, et al: Macrophage
Wnt7b is critical for kidney repair and regeneration. Proc Natl
Acad Sci USA. 107:4194–4199. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nikolic-Paterson DJ and Atkins RC: The
role of macrophages in glomerulonephritis. Nephrol Dial Transplant.
16(Suppl 5): 3–7. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Aliprantis AO, Diez-Roux G, Mulder LC,
Zychlinsky A and Lang RA: Do macrophages kill through apoptosis?
Immunol Today. 17:573–576. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Murray PJ and Wynn TA: Protective and
pathogenic functions of macrophage subsets. Nat Rev Immunol.
11:723–737. 2011. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Barros MHM, Hauck F, Dreyer JH, Kempkes B
and Niedobitek G: Macrophage polarisation: An immunohistochemical
approach for identifying M1 and M2 macrophages. PLoS One.
8:e809082013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gordon S and Martinez FO: Alternative
activation of macrophages: Mechanism and functions. Immunity.
32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kohchi C, Inagawa H, Nishizawa T and Soma
G: ROS and innate immunity. Anticancer Res. 29:817–821.
2009.PubMed/NCBI
|
9
|
Schroder K, Sweet MJ and Hume DA: Signal
integration between IFNgamma and TLR signalling pathways in
macrophages. Immunobiology. 211:511–524. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Martinez FO and Gordon S: The M1 and M2
paradigm of macrophage activation: Time for reassessment.
F1000Prime Rep. 6:132014. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Hu X and Ivashkiv LB: Cross-regulation of
signaling pathways by interferon-γ: Implications for immune
responses and autoimmune diseases. Immunity. 31:539–550. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Mantovani A, Biswas SK, Galdiero MR, Sica
A and Locati M: Macrophage plasticity and polarization in tissue
repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar
|
13
|
Mantovani A, Garlanda C and Locati M:
Macrophage diversity and polarization in atherosclerosis: A
question of balance. Arterioscler Thromb Vasc Biol. 29:1419–1423.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim SC, Lee JR and Park SJ: Porphyra
tenera induces apoptosis of oral cancer cells. Kor J Herbology.
30:25–30. 2015.
|
15
|
Kim YM, In JP and Park JH: Angiotensin I
converting enzyme (ACE) inhibitory activities of laver (Porphyra
tenera) protein hydrolysates. Prev Nutr Food Sci. 18:11–18.
2005.
|
16
|
Shin ES, Hwang HJ, Kim IH and Nam TJ: A
glycoprotein from Porphyra yezoensis produces anti-inflammatory
effects in liposaccharide-stimulated macrophages via the TLR4
signaling pathway. Int J Mol Med. 28:809–815. 2011.PubMed/NCBI
|
17
|
Hwang HJ, Kwon MJ, Kim IH and Nam TJ:
Chemoprotective effects of a protein from the red algae Porphyra
yezoensis on acetaminophen-induced liver injury in rats. Phytother
Res. 22:1149–1153. 2008. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
19
|
Liao X, Sharma N, Kapadia F, Zhou G, Lu Y,
Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, et
al: Krüppel-like factor 4 regulates macrophage polarization. J Clin
Invest. 121:2736–2749. 2011. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Szanto A, Balint BL, Nagy ZS, Barta E,
Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, et al: STAT6
transcription factor is a facilitator of the nuclear receptor
PPARγ-regulated gene expression in macrophages and dendritic cells.
Immunity. 33:699–712. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Labonte AC, Tosello-Trampont AC and Hahn
YS: The role of macrophage polarization in infectious and
inflammatory diseases. Mol Cells. 37:275–285. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Krausgruber T, Blazek K, Smallie T,
Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M and Udalova
IA: IRF5 promotes inflammatory macrophage polarization and TH1-TH17
responses. Nat Immunol. 12:231–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lawrence T and Natoli G: Transcriptional
regulation of macrophage polarization: Enabling diversity with
identity. Nat Rev Immunol. 11:750–761. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Biswas SK and Mantovani A: Macrophage
plasticity and interaction with lymphocyte subsets: Cancer as a
paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Verreck FA, de Boer T, Langenberg DM,
Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de
Waal-Malefyt R and Ottenhoff TH: Human IL-23-producing type 1
macrophages promote but IL-10-producing type 2 macrophages subvert
immunity to (myco)bacteria. Proc Natl Acad Sci USA. 101:4560–4565.
2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Agard M, Asakrah S and Morici LA: PGE(2)
suppression of innate immunity during mucosal bacterial infection.
Front Cell Infect Microbiol. 3:452013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kilbourn RG and Griffith OW:
Overproduction of nitric oxide in cytokine-mediated and septic
shock. J Natl Cancer Inst. 84:827–831. 1992. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hard GC: Some biochemical aspects of the
immune macrophage. Br J Exp Pathol. 51:97–105. 1970.PubMed/NCBI
|
29
|
Galván-Peña S and O'Neill LA: Metabolic
reprograming in macrophage polarization. Front Immunol.
5:4202014.PubMed/NCBI
|
30
|
West AP, Brodsky IE, Rahner C, Woo DK,
Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS and
Ghosh S: TLR signalling augments macrophage bactericidal activity
through mitochondrial ROS. Nature. 472:476–480. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jacobson MD: Reactive oxygen species and
programmed cell death. Trends Biochem Sci. 21:83–86. 1996.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Corraliza IM, Soler G, Eichmann K and
Modolell M: Arginase induction by suppressors of nitric oxide
synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived
macrophages. Biochem Biophys Res Commun. 206:667–673. 1995.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Munder M, Eichmann K and Modolell M:
Alternative metabolic states in murine macrophages reflected by the
nitric oxide synthase/arginase balance: Competitive regulation by
CD4+ T cells correlates with Th1/Th2 phenotype. J
Immunol. 160:5347–5354. 1998.PubMed/NCBI
|
34
|
Scotton CJ, Martinez FO, Smelt MJ, Sironi
M, Locati M, Mantovani A and Sozzani S: Transcriptional profiling
reveals complex regulation of the monocyte IL-1 β system by IL-13.
J Immunol. 174:834–845. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Raes G, De Baetselier P, Noël W, Beschin
A, Brombacher F and Hassanzadeh Gh G: Differential expression of
FIZZ1 and Ym1 in alternatively versus classically activated
macrophages. J Leukoc Biol. 71:597–602. 2002.PubMed/NCBI
|
36
|
Ricote M, Welch JS and Glass CK:
Regulation of macrophage gene expression by the peroxisome
proliferator-activated receptor-γ. Horm Res. 54:275–280. 2000.
View Article : Google Scholar
|
37
|
Mantovani A, Sica A, Sozzani S, Allavena
P, Vecchi A and Locati M: The chemokine system in diverse forms of
macrophage activation and polarization. Trends Immunol. 25:677–686.
2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Brown BN, Londono R, Tottey S, Zhang L,
Kukla KA, Wolf MT, Daly KA, Reing JE and Badylak SF: Macrophage
phenotype as a predictor of constructive remodeling following the
implantation of biologically derived surgical mesh materials. Acta
Biomater. 8:978–987. 2012. View Article : Google Scholar
|
39
|
Lau SK, Chu PG and Weiss LM: CD163: A
specific marker of macrophages in paraffin-embedded tissue samples.
Am J Clin Pathol. 122:794–801. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen Z, Wu C, Gu W, Klein T, Crawford R
and Xiao Y: Osteogenic differentiation of bone marrow MSCs by
β-tricalcium phosphate stimulating macrophages via BMP2 signalling
pathway. Biomaterials. 35:1507–1518. 2014. View Article : Google Scholar
|
41
|
Lee AS, Jung YJ, Kim D, Nguyen-Thanh T,
Kang KP, Lee S, Park SK and Kim W: SIRT2 ameliorates
lipopolysaccharide-induced inflammation in macrophages. Biochem
Biophys Res Commun. 450:1363–1369. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lopez-Castejón G, Baroja-Mazo A and
Pelegrín P: Novel macrophage polarization model: From gene
expression to identification of new anti-inflammatory molecules.
Cell Mol Life Sci. 68:3095–3107. 2011. View Article : Google Scholar
|
43
|
Wang N, Liang H and Zen K: Molecular
mechanisms that influence the macrophage m1-m2 polarization
balance. Front Immunol. 5:6142014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Murray PJ: Understanding and exploiting
the endogenous interleukin-10/STAT3-mediated anti-inflammatory
response. Curr Opin Pharmacol. 6:379–386. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mandal P, Pratt BT, Barnes M, McMullen MR
and Nagy LE: Molecular mechanism for adiponectin-dependent M2
macrophage polarization: Link between the metabolic and innate
immune activity of full-length adiponectin. J Biol Chem.
286:13460–13469. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
MacKinnon AC, Farnworth SL, Hodkinson PS,
Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes
SJ and Sethi T: Regulation of alternative macrophage activation by
galectin-3. J Immunol. 180:2650–2658. 2008. View Article : Google Scholar : PubMed/NCBI
|