1
|
Snover DC, Ahnen DJ, Burt RW and Odze RD:
Serrated polyps of the colon and rectum and serrated polyposis. WHO
Classification of Tumours of the Digestive System. Bosman FT,
Carneiro F, Hruban RH and Theise ND: IARC; Lyon: pp. 160–165.
2010
|
2
|
Kalady MF, Jarrar A, Leach B, LaGuardia L,
O'Malley M, Eng C and Church JM: Defining phenotypes and cancer
risk in hyper-plastic polyposis syndrome. Dis Colon Rectum.
54:164–170. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rosty C, Parry S and Young JP: Serrated
polyposis: an enigmatic model of colorectal cancer predisposition.
Pathol Res Int. 2011:1570732011. View Article : Google Scholar
|
4
|
Snover DC, Jass JR, Fenoglio-Preiser C and
Batts KP: Serrated polyps of the large intestine: a morphologic and
molecular review of an evolving concept. Am J Clin Pathol.
124:380–391. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Aust DE and Baretton GB; Members of the
Working Group GI-Pathology of the German Society of Pathology:
Serrated polyps of the colon and rectum (hyperplastic polyps,
sessile serrated adenomas, traditional serrated adenomas, and mixed
polyps)-proposal for diagnostic criteria. Virchows Arch.
457:291–297. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rosty C, Hewett DG, Brown IS, Leggett BA
and Whitehall VL: Serrated polyps of the large intestine: current
understanding of diagnosis, pathogenesis, and clinical management.
J Gastroenterol. 48:287–302. 2013. View Article : Google Scholar :
|
7
|
Young J and Jass JR: The case for a
genetic predisposition to serrated neoplasia in the colorectum:
hypothesis and review of the literature. Cancer Epidemiol
Biomarkers Prev. 15:1778–1784. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lindor NM: Hereditary colorectal cancer:
MYH-associated polyposis and other newly identified disorders. Best
Pract Res Clin Gastroenterol. 23:75–87. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Roberts A, Nancarrow D, Clendenning M,
Buchanan DD, Jenkins MA, Duggan D, Taverna D, McKeone D, Walters R,
Walsh MD, et al: Linkage to chromosome 2q32.2-q33.3 in familial
serrated neoplasia (Jass syndrome). Fam Cancer. 10:245–254. 2011.
View Article : Google Scholar :
|
10
|
Leggett B and Whitehall V: Role of the
serrated pathway in colorectal cancer pathogenesis.
Gastroenterology. 138:2088–2100. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jass JR, Iino H, Ruszkiewicz A, Painter D,
Solomon MJ, Koorey DJ, Cohn D, Furlong KL, Walsh MD, Palazzo J, et
al: Neoplastic progression occurs through mutator pathways in
hyperplastic polyposis of the colorectum. Gut. 47:43–49. 2000.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Jass JR, Young J and Leggett BA:
Hyperplastic polyps and DNA microsatellite unstable cancers of the
colorectum. Histopathology. 37:295–301. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Snover DC: Update on the serrated pathway
to colorectal carcinoma. Hum Pathol. 42:1–10. 2011. View Article : Google Scholar
|
14
|
Chan AO, Issa JP, Morris JS, Hamilton SR
and Rashid A: Concordant CpG island methylation in hyperplastic
polyposis. Am J Pathol. 160:529–536. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kambara T, Simms LA, Whitehall VL, Spring
KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara
N, et al: BRAF mutation is associated with DNA methylation in
serrated polyps and cancers of the colorectum. Gut. 53:1137–1144.
2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Weisenberger DJ, Siegmund KD, Campan M,
Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D,
Buchanan D, et al: CpG island methylator phenotype underlies
sporadic microsatellite instability and is tightly associated with
BRAF mutation in colorectal cancer. Nat Genet. 38:787–793. 2006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chow E, Lipton L, Lynch E, D'Souza R,
Aragona C, Hodgkin L, Brown G, Winship I, Barker M, Buchanan D, et
al: Hyperplastic polyposis syndrome: phenotypic presentations and
the role of MBD4 and MYH. Gastroenterology. 131:30–39. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yeoman A, Young J, Arnold J, Jass J and
Parry S: Hyperplastic polyposis in the New Zealand population: a
condition associated with increased colorectal cancer risk and
European ancestry. N Z Med J. 120:U28272007.
|
19
|
Boparai KS, Mathus-Vliegen EM, Koornstra
JJ, Nagengast FM, van Leerdam M, van Noesel CJ, Houben M, Cats A,
van Hest LP, Fockens P and Dekker E: Increased colorectal cancer
risk during follow-up in patients with hyperplastic polyposis
syndrome: a multicentre cohort study. Gut. 59:1094–1100. 2010.
View Article : Google Scholar
|
20
|
Minoo P, Baker K, Goswami R, Chong G,
Foulkes WD, Ruszkiewicz AR, Barker M, Buchanan D, Young J and Jass
JR: Extensive DNA methylation in normal colorectal mucosa in
hyperplastic polyposis. Gut. 55:1467–1474. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wynter CV, Walsh MD, Higuchi T, Leggett
BA, Young J and Jass JR: Methylation patterns define two types of
hyperplastic polyp associated with colorectal cancer. Gut.
53:573–580. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Carvajal-Carmona LG, Howarth KM, Lockett
M, Polanco-Echeverry GM, Volikos E, Gorman M, Barclay E, Martin L,
Jones AM, Saunders B, et al: Molecular classification and genetic
pathways in hyperplastic polyposis syndrome. J Pathol. 212:378–385.
2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Guarinos C, Sánchez-Fortún C,
Rodríguez-Soler M, Alenda C, Payá A and Jover R: Serrated polyposis
syndrome: molecular, pathological and clinical aspects. World J
Gastroenterol. 18:2452–2461. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Boparai KS, Reitsma JB, Lemmens V, van Os
TA, Mathus-Vliegen EM, Koornstra JJ, Nagengast FM, van Hest LP,
Keller JJ and Dekker E: Increased colorectal cancer risk in
first-degree relatives of patients with hyperplastic polyposis
syndrome. Gut. 59:1222–1225. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Win AK, Walters RJ, Buchanan DD, Jenkins
MA, Sweet K, Frankel WL, de la Chapelle A, McKeone DM, Walsh MD,
Clendenning M, et al: Cancer risks for relatives of patients with
serrated polyposis. Am J Gastroenterol. 107:770–778. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Caetano AC, Ferreira H, Soares J, Ferreira
A, Gonçalves R and Rolanda C: Phenotypic characterization and
familial risk in hyperplastic polyposis syndrome. Scand J
Gastroenterol. 48:1166–1172. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hazewinkel Y, Koornstra JJ, Boparai KS,
van Os TA, Tytgat KM, van Eeden S, Fockens P and Dekker E: Yield of
screening colonoscopy in first-degree relatives of patients with
serrated polyposis syndrome. J Clin Gastroenterol. 2014.PubMed/NCBI
|
28
|
Jasperson KW, Kanth P, Kirchhoff AC,
Huismann D, Gammon A, Kohlmann W, Burt RW and Samadder NJ: Serrated
polyposis: colonic phenotype, extracolonic features, and familial
risk in a large cohort. Dis Colon Rectum. 56:1211–1216. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lanspa SJ, Ahnen DJ and Lynch HT: Serrated
polyposis: the last (or only the latest?) frontier of familial
polyposis? Am J Gastroenterol. 107:779–781. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Albuquerque C, Breukel C, van der Luijt R,
Fidalgo P, Lage P, Slors FJ, Leitão CN, Fodde R and Smits R: The
'just-right' signaling model: APC somatic mutations are selected
based on a specific level of activation of the beta-catenin
signaling cascade. Hum Mol Genet. 11:1549–1560. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Miller SA, Dykes DD and Polesky HF: A
simple salting out procedure for extracting DNA from human
nucleated cells. Nucleic Acids Res. 16:12151988. View Article : Google Scholar : PubMed/NCBI
|
32
|
Francisco I, Albuquerque C, Lage P, Belo
H, Vitoriano I, Filipe B, Claro I, Ferreira S, Rodrigues P, Chaves
P, et al: Familial colorectal cancer type X syndrome: two distinct
molecular entities? Fam Cancer. 10:623–631. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Albuquerque C, Baltazar C, Filipe B, Penha
F, Pereira T, Smits R, Cravo M, Lage P, Fidalgo P, Claro I, et al:
Colorectal cancers show distinct mutation spectra in members of the
canonical WNT signaling pathway according to their anatomical
location and type of genetic instability. Genes Chromosomes Cancer.
49:746–759. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu W, Dong X, Mai M, Seelan RS, Taniguchi
K, Krishnadath KK, Halling KC, Cunningham JM, Boardman LA, Qian C,
et al: Mutations in AXIN2 cause colorectal cancer with defective
mismatch repair by activating beta-catenin/TCF signalling. Nat
Genet. 26:146–147. 2000. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Boland CR, Thibodeau SN, Hamilton SR,
Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA,
Fodde R, Ranzani GN and Srivastava S: A National Cancer Institute:
Workshop on Microsatellite Instability for cancer detection and
familial predisposition: development of international criteria for
the determination of microsatellite instability in colorectal
cancer. Cancer Res. 58:5248–5257. 1998.PubMed/NCBI
|
37
|
Umar A: Lynch syndrome (HNPCC) and
microsatellite instability. Dis Markers. 20:179–180. 2004.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Nygren AO, Ameziane N, Duarte HM,
Vijzelaar RN, Waisfisz Q, Hess CJ, Schouten JP and Errami A:
Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG
methylation and copy number changes of up to 40 sequences. Nucleic
Acids Res. 33:e1282005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Gylling A, Ridanpää M, Vierimaa O,
Aittomäki K, Avela K, Kääriäinen H, Laivuori H, Pöyhönen M,
Sallinen SL, Wallgren-Pettersson C, et al: Large genomic
rearrangements and germline epimutations in Lynch syndrome. Int J
Cancer. 124:2333–2340. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yamada A, Minamiguchi S, Sakai Y,
Horimatsu T, Muto M, Chiba T, Boland CR and Goel A: Colorectal
advanced neoplasms occur through dual carcinogenesis pathways in
individuals with coexisting serrated polyps. PLoS One.
9:e980592014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Filipe B, Baltazar C, Albuquerque C,
Fragoso S, Lage P, Vitoriano I, Mão de Ferro S, Claro I, Rodrigues
P, Fidalgo P, et al: APC or MUTYH mutations account for the
majority of clinically well-characterized families with FAP and
AFAP phenotype and patients with more than 30 adenomas. Clin Genet.
76:242–255. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Albuquerque C, Bakker ER, van Veelen W and
Smits R: Colorectal cancers choosing sides. Biochim Biophys Acta.
1816:219–231. 2011.PubMed/NCBI
|
43
|
Christie M, Jorissen RN, Mouradov D,
Sakthianandeswaren A, Li S, Day F, Tsui C, Lipton L, Desai J, Jones
IT, et al: Different APC genotypes in proximal and distal sporadic
colorectal cancers suggest distinct WNT/β-catenin signalling
thresholds for tumourigenesis. Oncogene. 32:4675–4682. 2013.
View Article : Google Scholar
|
44
|
Leedham SJ, Rodenas-Cuadrado P, Howarth K,
Lewis A, Mallappa S, Segditsas S, Davis H, Jeffery R,
Rodriguez-Justo M, Keshav S, et al: A basal gradient of Wnt and
stem-cell number influences regional tumour distribution in human
and mouse intestinal tracts. Gut. 62:83–93. 2013. View Article : Google Scholar :
|
45
|
Plaschke J, Preussler M, Ziegler A and
Schackert HK: Aberrant protein expression and frequent allelic loss
of MSH3 in colorectal cancer with low-level microsatellite
instability. Int J Colorectal Dis. 27:911–919. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hatch SB, Lightfoot HM Jr, Garwacki CP,
Moore DT, Calvo BF, Woosley JT, Sciarrotta J, Funkhouser WK and
Farber RA: Microsatellite instability testing in colorectal
carcinoma: choice of markers affects sensitivity of detection of
mismatch repair-deficient tumors. Clin Cancer Res. 11:2180–2187.
2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Christmann M and Kaina B: Nuclear
translocation of mismatch repair proteins MSH2 and MSH6 as a
response of cells to alkylating agents. J Biol Chem.
275:36256–36262. 2000. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sohn KJ, Choi M, Song J, Chan S, Medline
A, Gallinger S and Kim YI: Msh2 deficiency enhances somatic Apc and
p53 mutations in Apc+/−Msh2−/− mice.
Carcinogenesis. 24:217–224. 2003. View Article : Google Scholar : PubMed/NCBI
|
49
|
Oliveira C, Westra JL, Arango D,
Ollikainen M, Domingo E, Ferreira A, Velho S, Niessen R, Lagerstedt
K, Alhopuro P, et al: Distinct patterns of KRAS mutations in
colorectal carcinomas according to germline mismatch repair defects
and hMLH1 methylation status. Hum Mol Genet. 13:2303–2311. 2004.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Mark SC, Sandercock LE, Luchman HA, Baross
A, Edelmann W and Jirik FR: Elevated mutant frequencies and
predominance of G:C to A:T transition mutations in Msh6(−/−) small
intestinal epithelium. Oncogene. 21:7126–7130. 2002. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wada R, Yamaguchi T and Tadokoro K:
Colonic Paneth cell metaplasia is pre-neoplastic condition of
colonic cancer or not? J Carcinog. 4:52005. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wada R: Proposal of a new hypothesis on
the development of colorectal epithelial neoplasia:nonspecific
inflammation - colorectal Paneth cell metaplasia - colorectal
epithelial neoplasia. Digestion. 79(Suppl 1): 9–12. 2009.
View Article : Google Scholar
|
53
|
Andreu P, Peignon G, Slomianny C, Taketo
MM, Colnot S, Robine S, Lamarque D, Laurent-Puig P, Perret C and
Romagnolo B: A genetic study of the role of the Wnt/beta-catenin
signalling in Paneth cell differentiation. Dev Biol. 324:288–296.
2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sada M, Mitomi H, Igarashi M, Katsumata T,
Saigenji K and Okayasu I: Cell kinetics, p53 and bcl-2 expression,
and c-Ki-ras mutations in flat-elevated tubulovillous adenomas and
adenocarcinomas of the colorectum: comparison with polypoid
lesions. Scand J Gastroenterol. 34:798–807. 1999. View Article : Google Scholar : PubMed/NCBI
|
55
|
Maltzman T, Knoll K, Martinez ME, Byers T,
Stevens BR, Marshall JR, Reid ME, Einspahr J, Hart N, Bhattacharyya
AK, et al: Ki-ras proto-oncogene mutations in sporadic colorectal
adenomas: relationship to histologic and clinical characteristics.
Gastroenterology. 121:302–309. 2001. View Article : Google Scholar : PubMed/NCBI
|
56
|
Jass JR, Baker K, Zlobec I, Higuchi T,
Barker M, Buchanan D and Young J: Advanced colorectal polyps with
the molecular and morphological features of serrated polyps and
adenomas: concept of a 'fusion' pathway to colorectal cancer.
Histopathology. 49:121–131. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
García-Solano J, Conesa-Zamora P,
Carbonell P, Trujillo-Santos J, Torres-Moreno DD, Pagán-Gómez I,
Rodríguez-Braun E and Pérez-Guillermo M: Colorectal serrated
adenocarcinoma shows a different profile of oncogene mutations, MSI
status and DNA repair protein expression compared to conventional
and sporadic MSI-H carcinomas. Int J Cancer. 131:1790–1799. 2012.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Feng Y, Bommer GT, Zhao J, Green M, Sands
E, Zhai Y, Brown K, Burberry A, Cho KR and Fearon ER: Mutant KRAS
promotes hyperplasia and alters differentiation in the colon
epithelium but does not expand the presumptive stem cell pool.
Gastroenterology. 141:1003–1013. e1–10. 2011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Carragher LA, Snell KR, Giblett SM,
Aldridge VS, Patel B, Cook SJ, Winton DJ, Marais R and Pritchard
CA: V600EBraf induces gastrointestinal crypt senescence and
promotes tumour progression through enhanced CpG methylation of
p16INK4a. EMBO Mol Med. 2:458–471. 2010. View Article : Google Scholar : PubMed/NCBI
|