1
|
Qin Q, Shi Y, Zhao Q, Luo D, Chen Y, Wu J
and Zhao M: Effects of CD25siRNA gene transfer on high-risk rat
corneal graft rejection. Graefes Arch Clin Exp Ophthalmol.
253:1765–1776. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pan Q, Xu Q, Boylan NJ, Lamb NW, Emmert
DG, Yang JC, Tang L, Heflin T, Alwadani S, Eberhart CG, et al:
Corticosteroid-loaded biodegradable nanoparticles for prevention of
corneal allograft rejection in rats. J Control Release. 201:32–40.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen Y, Liao C, Gao M, Belin MW, Wang M,
Yu H and Yu J: Efficacy and safety of corneal transplantation using
corneas from foreign donors versus domestic donors: a prospective,
randomized, controlled trial. J Ophthalmol. 2015:1782892015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Paunicka KJ, Mellon J, Robertson D,
Petroll M, Brown JR and Niederkorn JY: Severing corneal nerves in
one eye induces sympathetic loss of immune privilege and promotes
rejection of future corneal allografts placed in either eye. Am J
Transplant. 15:1490–1501. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang H, Wang L and Zhang L: Cyclosporine
nanomicelle eye drop: a novel medication for corneal graft
transplantation treatment. Biol Pharm Bull. 38:893–900. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Pleyer U, Milani JK, Dukes A, Chou J, Lutz
S, Rückert D, Thiel HJ and Mondino BJ: Effect of topically applied
anti-CD4 monoclonal antibodies on orthotopic corneal allografts in
a rat model. Invest Ophthalmol Vis Sci. 36:52–61. 1995.PubMed/NCBI
|
7
|
Niederkorn JY: Immunology and
immunomodulation of corneal transplantation. Int Rev Immunol.
21:173–196. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Olson BM, Sullivan JA and Burlingham WJ:
Interleukin 35: a key mediator of suppression and the propagation
of infectious tolerance. Front Immunol. 4:3152013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Käser T, Müllebner A, Hartl RT, Essler SE,
Saalmüller A and Catharina Duvigneau J: Porcine T-helper and
regulatory T cells exhibit versatile mRNA expression capabilities
for cytokines and co-stimulatory molecules. Cytokine. 60:400–409.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang YL, Zhou XY, Guo XY and Tu JW:
Association between serum interleukin-35 levels and severity of
acute pancreatitis. Int J Clin Exp Med. 8:7430–7434.
2015.PubMed/NCBI
|
11
|
Filková M, Vernerová Z, Hulejová H,
Prajzlerová K, Veigl D, Pavelka K, Vencovský J and Šenolt L:
Pro-inflammatory effects of interleukin-35 in rheumatoid arthritis.
Cytokine. 73:36–43. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Köseoğlu S, Sağlam M, Pekbağrıyanık T,
Savran L and Sütçü R: Level of interleukin-35 in gingival
crevicular fluid, saliva, and plasma in periodontal disease and
health. J Periodontol. 86:964–971. 2015. View Article : Google Scholar
|
13
|
Ding LF, Chen Q, Li L, Liu JM, Zhang GP,
Zhu XH, Wu AM, Ke JW, Dai YL and Wu CX: Effects of sublingual
immunotherapy on serum IL-17 and IL-35 levels in children with
allergic rhinitis or asthma. Zhongguo Dang Dai Er Ke Za Zhi.
16:1206–1210. 2014.In Chinese. PubMed/NCBI
|
14
|
Collison LW, Chaturvedi V, Henderson AL,
Giacomin PR, Guy C, Bankoti J, Finkelstein D, Forbes K, Workman CJ,
Brown SA, et al: IL-35-mediated induction of a potent regulatory T
cell population. Nat Immunol. 11:1093–1101. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Collison LW, Workman CJ, Kuo TT, Boyd K,
Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS and Vignali DA:
the inhibitory cytokine IL-35 contributes to regulatory T-cell
function. Nature. 450:566–569. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tsuda M, Zhang W, Yang GX, Tsuneyama K,
Ando Y, Kawata K, Park O, Leung PS, Coppel RL, Ansari AA, et al:
Deletion of interleukin (IL)-12p35 induces liver fibrosis in
dominant-negative TGFβ receptor type II mice. Hepatology.
57:806–816. 2013. View Article : Google Scholar
|
17
|
Wirtz S, Billmeier U, Mchedlidze T,
Blumberg RS and Neurath MF: Interleukin-35 mediates mucosal immune
responses that protect against T-cell-dependent colitis.
Gastroenterology. 141:1875–1886. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guo H, Wang W, Zhao N, He X, Zhu L and
Jiang X: Inhibiting cardiac allograft rejection with interleukin-35
therapy combined with decitabine treatment in mice. Transpl
Immunol. 29:99–104. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jin E, Wang C, Hu Q, Jin G and Li S: The
regular distribution and expression pattern of immunosuppressive
cytokine IL-35 in mouse uterus during early pregnancy. Rom J
Morphol Embryol. 55:1353–1361. 2014.
|
20
|
Ali TK, Matragoon S, Pillai BA, Liou GI
and El-Remessy AB: Peroxynitrite mediates retinal neurodegeneration
by inhibiting nerve growth factor survival signaling in
experimental and human diabetes. Diabetes. 57:889–898. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Niedbala W, Wei XQ, Cai B, Hueber AJ,
Leung BP, McInnes IB and Liew FY: IL-35 is a novel cytokine with
therapeutic effects against collagen-induced arthritis through the
expansion of regulatory T cells and suppression of Th17 cells. Eur
J Immunol. 37:3021–3029. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hori S, Nomura T and Sakaguchi S: Control
of regulatory T cell development by the transcription factor Foxp3.
Science. 299:1057–1061. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
He Y, Jie Y, Wang B, Zeng H, Zhang Y and
Pan Z: Adoptive transfer of donor corneal antigen-specific
regulatory T cells can prolong mice corneal grafts survival.
Cornea. 29(Suppl 1): S25–S31. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rossmanith W, Chabicovsky M, Herkner K and
Schulte-Hermann R: Cellular gene dose and kinetics of gene
expression in mouse livers transfected by high-volume tail-vein
injection of naked DNA. DNA Cell Biol. 21:847–853. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Maruyama H, Higuchi N, Nishikawa Y, Kameda
S, Iino N, Kazama JJ, Takahashi N, Sugawa M, Hanawa H, Tada N, et
al: High-level expression of naked DNA delivered to rat liver via
tail vein injection. J Gene Med. 4:333–341. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu F, Song Y and Liu D:
Hydrodynamics-based transfection in animals by systemic
administration of plasmid DNA. Gene Ther. 6:1258–1266. 1999.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Andrianaivo F, Lecocq M, Wattiaux-De
Coninck S, Wattiaux R and Jadot M: Hydrodynamics-based transfection
of the liver: entrance into hepatocytes of DNA that causes
expression takes place very early after injection. J Gene Med.
6:877–883. 2004. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Jiang Y, Zhang Q and Steinle JJ:
Intravitreal injection of IGFBP-3 restores normal insulin signaling
in diabetic rat retina. PLoS One. 9:e937882014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yoon KC, Ahn KY, Lee JH, Chun BJ, Park SW,
Seo MS, Park YG and Kim KK: Lipid-mediated delivery of
brain-specific angiogenesis inhibitor 1 gene reduces corneal
neovascularization in an in vivo rabbit model. Gene Ther.
12:617–624. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sonoda S, Tachibana K, Uchino E, Okubo A,
Yamamoto M, Sakoda K, Hisatomi T, Sonoda KH, Negishi Y, Izumi Y, et
al: Gene transfer to corneal epithelium and keratocytes mediated by
ultrasound with microbubbles. Invest Ophthalmol Vis Sci.
47:558–564. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Masli S, Turpie B, Hecker KH and Streilein
JW: Expression of thrombospondin in TGFbeta-treated APCs and its
relevance to their immune deviation-promoting properties. J
Immunol. 168:2264–2273. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Torres PF, De Vos AF, van der Gaag R,
Martins B and Kijlstra A: Cytokine mRNA expression during
experimental corneal allograft rejection. Exp Eye Res. 63:453–461.
1996. View Article : Google Scholar : PubMed/NCBI
|
33
|
Song SS, Yuan PF, Chen JY, Fu JJ, Wu HX,
Lu JT and Wei W: TGF-β favors bone marrow-derived dendritic cells
to acquire tolerogenic properties. Immunol Invest. 43:360–369.
2014. View Article : Google Scholar
|
34
|
Zhou L, Zhu X, Tan J, Wang J and Xing Y:
Effect of recombinant adeno-associated virus mediated transforming
growth factor-beta1 on corneal allograft survival after high-risk
penetrating keratoplasty. Transpl Immunol. 28:164–169. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Enzmann V, Hollborn M, Wiedemann P and
Kohen L: Minor influence of the immunosuppressive cytokines IL-10
and TGF-beta on the proliferation and apoptosis of human retinal
pigment epithelial (RPE) cells in vitro. Ocul Immunol Inflamm.
9:259–266. 2001. View Article : Google Scholar
|
36
|
Li B, Tian L, Diao Y, Li X, Zhao L and
Wang X: Exogenous IL-10 induces corneal transplantation immune
tolerance by a mechanism associated with the altered Th1/Th2
cytokine ratio and the increased expression of TGF-β. Mol Med Rep.
9:2245–2250. 2014.PubMed/NCBI
|
37
|
Klebe S, Sykes PJ, Coster DJ, Krishnan R
and Williams KA: Prolongation of sheep corneal allograft survival
by ex vivo transfer of the gene encoding interleukin-10.
Transplantation. 71:1214–1220. 2001. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang X, Wang W, Xu J, Wu S and Le Q:
All-trans retinoid acid promotes allogeneic corneal graft survival
in mice by regulating Treg-Th17 balance in the presence of TGF-β.
BMC Immunol. 16:172015. View Article : Google Scholar
|
39
|
Klebe S, Coster DJ, Sykes PJ, Swinburne S,
Hallsworth P, Scheerlinck JP, Krishnan R and Williams KA:
Prolongation of sheep corneal allograft survival by transfer of the
gene encoding ovine IL-12-p40 but not IL-4 to donor corneal
endothelium. J Immunol. 175:2219–2226. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gee K, Guzzo C, Che Mat NF, Ma W and Kumar
A: The IL-12 family of cytokines in infection, inflammation and
autoimmune disorders. Inflamm Allergy Drug Targets. 8:40–52. 2009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
King WJ, Comer RM, Hudde T, Larkin DF and
George AJ: Cytokine and chemokine expression kinetics after corneal
transplantation. Transplantation. 70:1225–1233. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Maier P, Heizmann U, Böhringer D, Kern Y
and Reinhard T: Predicting the risk for corneal graft rejection by
aqueous humor analysis. Mol Vis. 17:1016–1023. 2011.PubMed/NCBI
|
43
|
Park H, Li Z, Yang XO, Chang SH, Nurieva
R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q and Dong C: A distinct
lineage of CD4 T cells regulates tissue inflammation by producing
interleukin 17. Nat Immunol. 6:1133–1141. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tang JL, Subbotin VM, Antonysamy MA,
Troutt AB, Rao AS and Thomson AW: Interleukin-17 antagonism
inhibits acute but not chronic vascular rejection. Transplantation.
72:348–350. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Antonysamy MA, Fanslow WC, Fu F, Li W,
Qian S, Troutt AB and Thomson AW: Evidence for a role of IL-17 in
alloimmunity: a novel IL-17 antagonist promotes heart graft
survival. Transplant Proc. 31:931999. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen X, Zhao S, Tang X, Ge H and Liu P:
Neutralization of mouse interleukin-17 bioactivity inhibits corneal
allograft rejection. Mol Vis. 17:2148–2156. 2011.PubMed/NCBI
|
47
|
Chen H, Wang W, Xie H, Xu X, Wu J, Jiang
Z, Zhang M, Zhou L and Zheng S: A pathogenic role of IL-17 at the
early stage of corneal allograft rejection. Transpl Immunol.
21:155–161. 2009. View Article : Google Scholar : PubMed/NCBI
|