The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review)
- Authors:
- Hongyan Zhou
- Wensong Zhang
- Miaomiao Bi
- Jie Wu
-
Affiliations: Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China - Published online on: August 4, 2016 https://doi.org/10.3892/ijmm.2016.2699
- Pages: 1003-1011
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Leong YY and Tong L: Barrier function in the ocular surface: From conventional paradigms to new opportunities. Ocul Surf. 13:103–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cabalag MS, Wasiak J, Syed Q, Paul E, Hall AJ and Cleland H: Early and late complications of ocular burn injuries. J Plast Reconstr Aesthet Surg. 68:356–361. 2015. View Article : Google Scholar | |
Saika S, Yamanaka O, Okada Y, Miyamoto T, Kitano A, Flanders KC, Ohnishi Y, Nakajima Y, Kao WW and Ikeda K: Effect of overexpression of PPARgamma on the healing process of corneal alkali burn in mice. Am J Physiol Cell Physiol. 293:C75–C86. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pargament JM, Armenia J and Nerad JA: Physical and chemical injuries to eyes and eyelids. Clin Dermatol. 33:234–237. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Gu H and Hu N: Role of Peroxisome Proliferator-Activated Receptor γ in Ocular Diseases. J Ophthalmol. 2015:2754352015. View Article : Google Scholar | |
Hsu CC, Peng CH, Hung KH, Lee YY, Lin TC, Jang SF, Liu JH, Chen YT, Woung LC, Wang CY, et al: Stem cell therapy for corneal regeneration medicine and contemporary nanomedicine for corneal disorders. Cell Transplant. 24:1915–1930. 2015. View Article : Google Scholar | |
Mittal V, Jain R, Mittal R, Vashist U and Narang P: Successful management of severe unilateral chemical burns in children using simple limbal epithelial transplantation (SLET). Br J Ophthalmol. 2015:3071792015. | |
Movahedan A, Genereux BM, Darvish-Zargar M, Shah KJ and Holland EJ: Long-term management of severe ocular surface injury due to methamphetamine production accidents. Cornea. 34:433–437. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kafle PA, Singh SK, Sarkar I and Surin L: Amniotic membrane transplantation with and without limbal stem cell transplantation in chemical eye injury. Nepal J Ophthalmol. 7:52–55. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scholz SL, Thomasen H, Hestermann K, Dekowski D, Steuhl KP and Meller D: Long-term results of autologous transplantation of limbal epithelium cultivated ex vivo for limbal stem cell deficiency. Ophthalmologe. 113:321–329. 2016.In German. View Article : Google Scholar | |
Almaliotis D, Koliakos G, Papakonstantinou E, Komnenou A, Thomas A, Petrakis S, Nakos I, Gounari E and Karampatakis V: Mesenchymal stem cells improve healing of the cornea after alkali injury. Graefes Arch Clin Exp Ophthalmol. 253:1121–1135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M and Cejkova J: Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem Cells Transl Med. 4:1052–1063. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sotozono C, Inatomi T, Nakamura T, Koizumi N, Yokoi N, Ueta M, Matsuyama K, Kaneda H, Fukushima M and Kinoshita S: Cultivated oral mucosal epithelial transplantation for persistent epithelial defect in severe ocular surface diseases with acute inflammatory activity. Acta Ophthalmol. 92:e447–e453. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rudnisky CJ, Belin MW, Guo R and Ciolino JB: Boston Type 1 Keratoprosthesis Study Group: Visual Acuity Outcomes of the Boston Keratoprosthesis Type 1: Multicenter Study Results. Am J Ophthalmol. 162:89–98. 2016. View Article : Google Scholar | |
Kammerdiener LL, Speiser JL, Aquavella JV, Harissi-Dagher M, Dohlman CH, Chodosh J and Ciolino JB: Protective effect of soft contact lenses after Boston keratoprosthesis. Br J Ophthalmol. 100:549–552. 2016. View Article : Google Scholar | |
Iyer G, Srinivasan B, Rishi E, Rishi P, Agarwal S and Subramanian N: Large lamellar corneoscleral grafts: Tectonic role in initial management of severe ocular chemical injuries. Eur J Ophthalmol. 26:12–17. 2016. View Article : Google Scholar | |
Prockop DJ: Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol. 51:7–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Jiang D, Sindrilaru A, Stegemann A, Schatz S, Treiber N, Rojewski M, Schrezenmeier H, Vander Beken S, Wlaschek M, et al: TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol. 134:526–537. 2014. View Article : Google Scholar | |
Prockop DJ and Oh JY: Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol Ther. 20:14–20. 2012. View Article : Google Scholar : | |
Moreira PB, Magalhães RS, Pereira NC, Oliveira LA and Sousa LB: Limbal transplantation at a tertiary hospital in Brazil: A retrospective study. Arq Bras Oftalmol. 78:207–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schimke MM, Marozin S and Lepperdinger G: Patient-Specific age: The other side of the coin in advanced mesenchymal stem cell therapy. Front Physiol. 6:3622015. View Article : Google Scholar : PubMed/NCBI | |
Lamm V, Hara H, Mammen A, Dhaliwal D and Cooper DK: Corneal blindness and xenotransplantation. Xenotransplantation. 21:99–114. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heindl LM and Cursiefen C: Split-cornea transplantation-a novel concept to reduce corneal donor shortage. Klin Monbl Augenheilkd. 229:608–614. 2012.In German. PubMed/NCBI | |
Li X, Zhou Q, Hanus J, Anderson C, Zhang H, Dellinger M, Brekken R and Wang S: Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model. Mol Pharm. 10:307–318. 2013. View Article : Google Scholar : | |
Bakunowicz-Łazarczyk A and Urban B: Assessment of therapeutic options for reducing alkali burn-induced corneal neovascularization and inflammation. Adv Med Sci. 61:101–112. 2016. View Article : Google Scholar | |
Atiba A, Wasfy T, Abdo W, Ghoneim A, Kamal T and Shukry M: Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats. Clin Ophthalmol. 9:2019–2026. 2015.PubMed/NCBI | |
Rho CR, Choi JS, Seo M, Lee SK and Joo CK: Inhibition of lymphangiogenesis and hemangiogenesis in corneal inflammation by subconjunctival Prox1 siRNA injection in rats. Invest Ophthalmol Vis Sci. 56:5871–5879. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sijnave D, Van Bergen T, Castermans K, Kindt N, Vandewalle E, Stassen JM, Moons L and Stalmans I: Inhibition of Rho-associated kinase prevents pathological wound healing and neovascularization after corneal trauma. Cornea. 34:1120–1129. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lima TB, Ribeiro AP, Conceição LF, Bandarra M, Manrique WG and Laus JL: Ketorolac eye drops reduce inflammation and delay re-epithelization in response to corneal alkali burn in rabbits, without affecting iNOS or MMP-9. Arq Bras Oftalmol. 78:67–72. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Dou G, Zheng L, Yang T, Jia X, Tang L, Huang Y, Wu W, Li X and Wang X: Pharmacokinetics of topically applied recombinant human keratinocyte growth factor-2 in alkali-burned and intact rabbit eye. Exp Eye Res. 136:93–99. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shadmani A, Kazemi K, Khalili MR and Eghtedari M: Omental transposition in treatment of severe ocular surface alkaline burn: An experimental study. Med Hypothesis Discov Innov Ophthalmol. 3:57–61. 2014. | |
Dvashi Z, Sar Shalom H, Shohat M, Ben-Meir D, Ferber S, Satchi-Fainaro R, Ashery-Padan R, Rosner M, Solomon AS and Lavi S: Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. Am J Pathol. 184:2936–2950. 2014. View Article : Google Scholar : PubMed/NCBI | |
Crooke A, Guzman-Aranguez A, Mediero A, Alarma-Estrany P, Carracedo G, Pelaez T, Peral A and Pintor J: Effect of melatonin and analogues on corneal wound healing: Involvement of Mt2 melatonin receptor. Curr Eye Res. 40:56–65. 2015. View Article : Google Scholar | |
Iannetti L, Abbouda A, Fabiani C, Zito R and Campanella M: Treatment of corneal neovascularization in ocular chemical injury with an off-label use of subconjunctival bevacizumab: A case report. J Med Case Reports. 7:1992013. View Article : Google Scholar | |
Ozdemir O, Altintas O, Altintas L, Ozkan B, Akdag C and Yüksel N: Comparison of the effects of subconjunctival and topical anti-VEGF therapy (bevacizumab) on experimental corneal neovascularization. Arq Bras Oftalmol. 77:209–213. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taira BR, Singer AJ, McClain SA, Lin F, Rooney J, Zimmerman T and Clark RA: Rosiglitazone, a PPAR-gamma ligand, reduces burn progression in rats. J Burn Care Res. 30:499–504. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pershadsingh HA and Moore DM: PPARgamma Agonists: Potential as Therapeutics for Neovascular Retinopathies. PPAR Res. 2008:1642732008. View Article : Google Scholar : PubMed/NCBI | |
Gelman L, Fruchart JC and Auwerx J: An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cell Mol Life Sci. 55:932–943. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chinetti G, Fruchart JC and Staels B: Peroxisome proliferator-activated receptors and inflammation: From basic science to clinical applications. Int J Obes Relat Metab Disord. 27(Suppl 3): S41–S45. 2003. View Article : Google Scholar | |
Kostadinova R, Wahli W and Michalik L: PPARs in diseases: Control mechanisms of inflammation. Curr Med Chem. 12:2995–3009. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Matsuda H, Wang L, Watanabe T, Kimura MT, Igarashi J, Wang X, Sakimoto T, Fukuda N, Sawa M, et al: Pretranscriptional regulation of Tgf-β1 by PI polyamide prevents scarring and accelerates wound healing of the cornea after exposure to alkali. Mol Ther. 18:519–527. 2010. View Article : Google Scholar | |
Uchiyama M, Shimizu A, Masuda Y, Nagasaka S, Fukuda Y and Takahashi H: An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model. Mol Vis. 19:2135–2150. 2013.PubMed/NCBI | |
Sener G, Sehirli AO, Gedik N and Dülger GA: Rosiglitazone, a PPAR-gamma ligand, protects against burn-induced oxidative injury of remote organs. Burns. 33:587–593. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pershadsingh HA, Benson SC, Marshall, Kurtz TW, Pravenec M, King JC, Stopa EG and Famiglietti EV: Ocular diseases and peroxisome proliferator-activated receptor-γ (PPAR-γ) in mammalian eye. Soc Neurosci Abstr. 25:21931999. | |
Balachandar S and Katyal A: Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): A novel target for an additional therapy. Eur J Clin Microbiol Infect Dis. 30:483–498. 2011. View Article : Google Scholar | |
Pan H, Chen J, Xu J, Chen M and Ma R: Antifibrotic effect by activation of peroxisome proliferator-activated receptor-γ in corneal fibroblasts. Mol Vis. 15:2279–2286. 2009.PubMed/NCBI | |
Kaul D, Anand PK and Khanna A: Functional genomics of PPAR-gamma in human immunomodulatory cells. Mol Cell Biochem. 290:211–215. 2006. View Article : Google Scholar : PubMed/NCBI | |
Paterson HM, Murphy TJ, Purcell EJ, Shelley O, Kriynovich SJ, Lien E, Mannick JA and Lederer JA: Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol. 171:1473–1483. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bashir S, Sharma Y, Elahi A and Khan F: Macrophage polarization: The link between inflammation and related diseases. Inflamm Res. 65:1–11. 2016. View Article : Google Scholar | |
Valvis SM, Waithman J, Wood FM, Fear MW and Fear VS: The Immune Response to Skin Trauma Is Dependent on the Etiology of Injury in a Mouse Model of Burn and Excision. J Invest Dermatol. 135:2119–2128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fletcher HA, Keyser A, Bowmaker M, Sayles PC, Kaplan G, Hussey G, Hill AV and Hanekom WA: Transcriptional profiling of mycobacterial antigen-induced responses in infants vaccinated with BCG at birth. BMC Med Genomics. 2:102009. View Article : Google Scholar : PubMed/NCBI | |
D'Arpa N, D'Amelio L, Accardo-Palumbo A, Pileri D, Mogavero R, Amato G, Napoli B, Alessandro G, Lombardo C and Conte F: Skin dendritic cells in burn patients. Ann Burns Fire Disasters. 22:175–178. 2009.PubMed/NCBI | |
Rani M, Zhang Q, Scherer MR, Cap AP and Schwacha MG: Activated skin γδ T-cells regulate T-cell infiltration of the wound site after burn. Innate Immun. 21:140–150. 2015. View Article : Google Scholar | |
Schwacha MG, Zhang Q, Rani M, Craig T and Oppeltz RF: Burn enhances toll-like receptor induced responses by circulating leukocytes. Int J Clin Exp Med. 5:136–144. 2012.PubMed/NCBI | |
Yamada K, Ueta M, Sotozono C, Yokoi N, Inatomi T and Kinoshita S: Upregulation of Toll-like receptor 5 expression in the conjunctival epithelium of various human ocular surface diseases. Br J Ophthalmol. 98:1116–1119. 2014. View Article : Google Scholar : PubMed/NCBI | |
West AP, Koblansky AA and Ghosh S: Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 22:409–437. 2006. View Article : Google Scholar : PubMed/NCBI | |
Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH and Harding CV: TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258:29–37. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cornick SM, Noronha SA, Noronha SM, Cezillo MV, Ferreira LM and Gragnani A: Toll like receptors gene expression of human keratinocytes cultured of severe burn injury. Acta Cir Bras. 29(Suppl 3): 33–38. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shupp JW, Nasabzadeh TJ, Rosenthal DS, Jordan MH, Fidler P and Jeng JC: A review of the local pathophysiologic bases of burn wound progression. J Burn Care Res. 31:849–873. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kitano A, Okada Y, Yamanka O, Shirai K, Mohan RR and Saika S: Therapeutic potential of trichostatin A to control inflammatory and fibrogenic disorders of the ocular surface. Mol Vis. 16:2964–2973. 2010. | |
Chistyakov DV, Aleshin SE, Astakhova AA, Sergeeva MG and Reiser G: Regulation of peroxisome proliferator-activated receptors (PPAR) a and -γ of rat brain astrocytes in the course of activation by toll-like receptor agonists. J Neurochem. 134:113–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chistyakov DV, Aleshin S, Sergeeva MG and Reiser G: Regulation of peroxisome proliferator-activated receptor β/δ expression and activity levels by toll-like receptor agonists and MAP kinase inhibitors in rat astrocytes. J Neurochem. 130:563–574. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ding JL, Zhou ZG, Zhou XY, Zhou B, Wang L, Wang R, Zhan L, Sun XF and Li Y: Attenuation of acute pancreatitis by peroxisome proliferator-activated receptor-α in rats: The effect on Toll-like receptor signaling pathways. Pancreas. 42:114–122. 2013. View Article : Google Scholar | |
Zhao W, Wang L, Zhang M, Wang P, Zhang L, Yuan C, Qi J, Qiao Y, Kuo PC and Gao C: Peroxisome proliferator-activated receptor gamma negatively regulates IFN-beta production in Toll-like receptor (TLR) 3- and TLR4-stimulated macrophages by preventing interferon regulatory factor 3 binding to the IFN-beta promoter. J Biol Chem. 286:5519–5528. 2011. View Article : Google Scholar | |
Pan S, Lei L, Chen S, Li H and Yan F: Rosiglitazone impedes Porphyromonas gingivalis-accelerated atherosclerosis by down-regulating the TLR/NF-κB signaling pathway in atherosclerotic mice. Int Immunopharmacol. 23:701–708. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lian M, Luo W, Sui Y, Li Z and Hua J: Dietary n-3 PUFA protects mice from Con A induced liver injury by modulating regulatory T cells and PPAR-γ expression. PLoS One. 10:e01327412015. View Article : Google Scholar | |
Li T, Wang W, Zhao JH, Zhou X, Li YM and Chen H: Pseudolaric acid B inhibits T-cell mediated immune response in vivo via p38MAPK signal cascades and PPARγ activation. Life Sci. 121:88–96. 2015. View Article : Google Scholar | |
Kraft CT, Agarwal S, Ranganathan K, Wong VW, Loder S, Li J, Delano MJ and Levi B: Trauma-induced heterotopic bone formation and the role of the immune system: A review. J Trauma Acute Care Surg. 80:156–165. 2016. View Article : Google Scholar | |
Xiu F and Jeschke MG: Perturbed mononuclear phagocyte system in severely burned and septic patients. Shock. 40:81–88. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ferrari G, Bignami F, Giacomini C, Franchini S and Rama P: Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest Ophthalmol Vis Sci. 54:1680–1688. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yamada J, Dana MR, Sotozono C and Kinoshita S: Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res. 76:161–167. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sotozono C, He J, Matsumoto Y, Kita M, Imanishi J and Kinoshita S: Cytokine expression in the alkali-burned cornea. Curr Eye Res. 16:670–676. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Li L, Liu G, Zhang X and Mukaida N: Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Invest Ophthalmol Vis Sci. 50:4761–4768. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sakimoto T, Yamada A, Kanno H and Sawa M: Upregulation of tumor necrosis factor receptor 1 and TNF-alpha converting enzyme during corneal wound healing. Jpn J Ophthalmol. 52:393–398. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pattamatta U, Willcox M, Stapleton F and Garrett Q: Bovine lactoferrin promotes corneal wound healing and suppresses IL-1 expression in alkali wounded mouse cornea. Curr Eye Res. 38:1110–1117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shin YJ, Hyon JY, Choi WS, Yi K, Chung ES, Chung TY and Wee WR: Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation. Invest Ophthalmol Vis Sci. 54:4452–4458. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ling S, Li W, Liu L, Zhou H, Wang T, Ye H, Liang L and Yuan J: Allograft survival enhancement using doxycycline in alkali-burned mouse corneas. Acta Ophthalmol. 91:e369–e378. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiao O, Xie ZL, Lin BW, Yin XF, Pi RB and Zhou SY: Minocycline inhibits alkali burn-induced corneal neovascularization in mice. PLoS One. 7:e418582012. View Article : Google Scholar : PubMed/NCBI | |
Jeon HS, Yi K, Chung TY, Hyon JY, Wee WR and Shin YJ: Chemically injured keratocytes induce cytokine release by human peripheral mononuclear cells. Cytokine. 59:280–285. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cairns B, Maile R, Barnes CM, Frelinger JA and Meyer AA: Increased Toll-like receptor 4 expression on T cells may be a mechanism for enhanced T cell response late after burn injury. J Trauma. 61:293–298; discussion 298–299. 2006. View Article : Google Scholar : PubMed/NCBI | |
Planck SR, Rich LF, Ansel JC, Huang XN and Rosenbaum JT: Trauma and alkali burns induce distinct patterns of cytokine gene expression in the rat cornea. Ocul Immunol Inflamm. 5:95–100. 1997. View Article : Google Scholar : PubMed/NCBI | |
De Nuccio C, Bernardo A, Cruciani C, De Simone R, Visentin S and Minghetti L: Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation. Exp Neurol. 271:506–514. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shimada K, Furukawa H, Wada K, Korai M, Wei Y, Tada Y, Kuwabara A, Shikata F, Kitazato KT, Nagahiro S, et al: Protective Role of Peroxisome Proliferator-Activated Receptor-γ in the Development of Intracranial Aneurysm Rupture. Stroke. 46:1664–1672. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mirza RE, Fang MM, Novak ML, Urao N, Sui A, Ennis WJ and Koh TJ: Macrophage PPARγ and impaired wound healing in type 2 diabetes. J Pathol. 236:433–444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lan LF, Zheng L, Yang X, Ji XT, Fan YH and Zeng JS: Peroxisome proliferator-activated receptor-γ agonist pioglitazone ameliorates white matter lesion and cognitive impairment in hypertensive rats. CNS Neurosci Ther. 21:410–416. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang RC and Jiang DM: PPAR-γ agonist pioglitazone affects rat gouty arthritis by regulating cytokines. Genet Mol Res. 13:6577–6581. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Dong Z and Liu S: β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 mice through CB2 receptor activation and the PPARγ pathway. Pharmacology. 94:1–12. 2014. View Article : Google Scholar | |
Bhattarai G, Lee YH and Yi HK: Peroxisome proliferator activated receptor gamma loaded dental implant improves osteogenesis of rat mandible. J Biomed Mater Res B Appl Biomater. 103:587–595. 2015. View Article : Google Scholar | |
Guri AJ, Mohapatra SK, Horne WT II, Hontecillas R and Bassaganya-Riera J: The role of T cell PPAR γ in mice with experimental inflammatory bowel disease. BMC Gastroenterol. 10:602010. View Article : Google Scholar | |
Amparo F, Sadrai Z, Jin Y, Alfonso-Bartolozzi B, Wang H, Shikari H, Ciolino JB, Chodosh J, Jurkunas U, Schaumberg DA, et al: Safety and efficacy of the multitargeted receptor kinase inhibitor pazopanib in the treatment of corneal neovascularization. Invest Ophthalmol Vis Sci. 54:537–544. 2013. View Article : Google Scholar : | |
Huang X, Han Y, Shao Y and Yi JL: Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats. Int J Ophthalmol. 8:860–865. 2015.PubMed/NCBI | |
Lee CM, Jung WK, Na G, Lee DS, Park SG, Seo SK, Yang JW, Yea SS, Lee YM, Park WS, et al: Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization. Cutan Ocul Toxicol. 34:53–60. 2015. View Article : Google Scholar | |
Giacomini C, Ferrari G, Bignami F and Rama P: Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: An overview of two common animal models of corneal neovascularization. Exp Eye Res. 121:1–4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bignami F, Giacomini C, Lorusso A, Aramini A, Rama P and Ferrari G: NK1 receptor antagonists as a new treatment for corneal neovascularization. Invest Ophthalmol Vis Sci. 55:6783–6794. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koenig Y, Bock F, Kruse FE, Stock K and Cursiefen C: Angioregressive pretreatment of mature corneal blood vessels before keratoplasty: Fine-needle vessel coagulation combined with anti-VEGFs. Cornea. 31:887–892. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou AY, Bai YJ, Zhao M, Yu WZ and Li XX: KH902, a recombinant human VEGF receptor fusion protein, reduced the level of placental growth factor in alkali burn induced-corneal neovascularization. Ophthalmic Res. 50:180–186. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xin X, Yang S, Kowalski J and Gerritsen ME: Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem. 274:9116–9121. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vucic E, Dickson SD, Calcagno C, Rudd JH, Moshier E, Hayashi K, Mounessa JS, Roytman M, Moon MJ, Lin J, et al: Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC Cardiovasc Imaging. 4:1100–1109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Usui T, Sugisaki K, Iriyama A, Yokoo S, Yamagami S, Nagai N, Ishida S and Amano S: Inhibition of corneal neovascularization by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci. 49:4370–4376. 2008. View Article : Google Scholar : PubMed/NCBI | |
Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, Laforme AM, Chaponis DM, Folkman J and Kieran MW: PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA. 105:985–990. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hao F, Mu JW, Zhang HJ, Kuang HY, Yu QX, Bai MM and Meng P: Damage to vascular endothelial cells by high insulin levels is associated with increased expression of ChemR23, and attenuated by PPAR-gamma agonist, rosiglitazone. Neuro Endocrinol Lett. 36:59–66. 2015.PubMed/NCBI | |
Sarayba MA, Li L, Tungsiripat T, Liu NH, Sweet PM, Patel AJ, Osann KE, Chittiboyina A, Benson SC, Pershadsingh HA and Chuck RS: Inhibition of corneal neovascularization by a peroxisome proliferator-activated receptor-gamma ligand. Exp Eye Res. 80:435–442. 2005. View Article : Google Scholar : PubMed/NCBI Exp Eye Res. 80:435–442. 2005. View Article : Google Scholar | |
Zhang H, Wei T, Jiang X, Li Z, Cui H, Pan J, Zhuang W, Sun T, Liu Z, Zhang Z and Dong H: PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL. Apoptosis. 21:60–68. 2016. View Article : Google Scholar | |
Gronkiewicz KM, Giuliano EA, Kuroki K, Bunyak F, Sharma A, Teixeira LB, Hamm CW and Mohan RR: Development of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res. 143:75–88. 2016. View Article : Google Scholar | |
Donnelly KS, Giuliano EA, Sharm A and Mohan RR: Suberoylanilide hydroxamic acid (vorinostat): Its role on equine corneal fibrosis and matrix metalloproteinase activity. Vet Ophthalmol. 17(Suppl 1): 61–68. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Yang L, Qu M, Wang Y, Chen P, Wang Y and Shi W: Role of senescent fibroblasts on alkali-induced corneal neovascularization. J Cell Physiol. 227:1148–1156. 2012. View Article : Google Scholar | |
Jeon KI, Phipps RP, Sime PJ and Huxlin KR: Inhibitory effects of PPARγ ligands on TGF-β1-induced CTGF expression in cat corneal fibroblasts. Exp Eye Res. 138:52–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoon YS, Kim SY, Kim MJ, Lim JH, Cho MS and Kang JL: PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol. 8:1031–1046. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Zhu H, Zhou B, Xiao X and Zuo X: MicroRNA-130b regulates scleroderma fibrosis by targeting peroxisome proliferator-activated receptor γ. Mod Rheumatol. 25:595–602. 2015. View Article : Google Scholar | |
Zoccal KF, Paula-Silva FW, Bitencourt CS, Sorgi CA, Bordon KC, Arantes EC and Faccioli LH: PPAR-γ activation by Tityus serrulatus venom regulates lipid body formation and lipid mediator production. Toxicon. 93:90–97. 2015. View Article : Google Scholar | |
Wang C, Zeng L, Zhang T, Liu J and Wang W: Tenuigenin prevents IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing pi3k/akt/nf-κb signaling pathway. Inflammation. 39:807–812. 2016. View Article : Google Scholar : PubMed/NCBI | |
Poon MW, Yan L, Jiang D, Qin P, Tse HF, Wong IY, Wong DS, Tergaonkar V and Lian Q: Inhibition of RAP1 enhances corneal recovery following alkali injury. Invest Ophthalmol Vis Sci. 56:711–721. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saika S, Miyamoto T, Yamanaka O, Kato T, Ohnishi Y, Flanders KC, Ikeda K, Nakajima Y, Kao WW, Sato M, et al: Therapeutic effect of topical administration of SN50, an inhibitor of nuclear factor-κB, in treatment of corneal alkali burns in mice. Am J Pathol. 166:1393–1403. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Piao T, Wang Y and Liu J: Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting nf-κb and MAPK activation. Int Immunopharmacol. 25:83–87. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shen M, Yuan F, Jin J and Yuan Y: The effect of TC14012 on alkali burn-induced corneal neovascularization in mice. Ophthalmic Res. 52:17–24. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gardner JC, Noel JG, Nikolaidis NM, Karns R, Aronow BJ, Ogle CK and McCormack FX: G-CSF drives a posttraumatic immune program that protects the host from infection. J Immunol. 192:2405–2417. 2014. View Article : Google Scholar : PubMed/NCBI | |
Choo J, Lee Y, Yan XJ, Noh TH, Kim SJ, Son S, Pothoulakis C, Moon HR, Jung JH and Im E: A Novel Peroxisome Proliferator-activated Receptor (PPAR)γ Agonist 2-Hydroxyethyl 5-chloro-4,5-didehydrojasmonate Exerts Anti-Inflammatory Effects in Colitis. J Biol Chem. 290:25609–25619. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pires AS, Souza VC, Paula RS, Toledo JO, Lins TC, Moraes CF, Córdova C, Pereira RW and Nóbrega OT: Pro-inflammatory cytokines correlate with classical risk factors for atherosclerosis in the admixed Brazilian older women. Arch Gerontol Geriatr. 60:142–146. 2015. View Article : Google Scholar | |
Zhang F, Sun D, Chen J, Guan N, Huo X and Xi H: Simvastatin attenuates angiotensin II-induced inflammation and oxidative stress in human mesangial cells. Mol Med Rep. 11:1246–1251. 2015. | |
Xu S, Song H, Huang M, Wang K, Xu C and Xie L: Telmisartan inhibits the proinflammatory effects of homocysteine on human endothelial cells through activation of the peroxisome proliferator-activated receptor-δ pathway. Int J Mol Med. 34:828–834. 2014.PubMed/NCBI | |
Qin L, Gong C, Chen AM, Guo FJ, Xu F, Ren Y and Liao H: Peroxisome proliferator-activated receptor γ agonist rosiglitazone inhibits migration and invasion of prostate cancer cells through inhibition of the CXCR4/CXCL12 axis. Mol Med Rep. 10:695–700. 2014.PubMed/NCBI | |
Dong W, Wang X, Bi S, Pan Z, Liu S, Yu H, Lu H, Lin X, Wang X, Ma T and Zhang W: Inhibitory effects of resveratrol on foam cell formation are mediated through monocyte chemotactic protein-1 and lipid metabolism-related proteins. Int J Mol Med. 33:1161–1168. 2014.PubMed/NCBI | |
Higashihara H, Kokura S, Imamoto E, Ueda M, Naito Y, Yoshida N and Yoshikawa T: Hypoxia-reoxygenation enhances interleukin-8 production from U937 human monocytic cells. Redox Rep. 9:365–369. 2004. View Article : Google Scholar | |
Akahori T, Sho M, Hamada K, Suzaki Y, Kuzumoto Y, Nomi T, Nakamura S, Enomoto K, Kanehiro H and Nakajima Y: Importance of peroxisome proliferator-activated receptor-gamma in hepatic ischemia/reperfusion injury in mice. J Hepatol. 47:784–792. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sakimoto T and Ishimori A: Anti-inflammatory effect of topical administration of tofacitinib on corneal inflammation. Exp Eye Res. 145:110–117. 2016. View Article : Google Scholar | |
Ma J, Zhou D, Fan M, Wang H, Huang C, Zhang Z, Wu Y, Li W, Chen Y and Liu Z: Keratocytes create stromal spaces to promote corneal neovascularization via MMP13 expression. Invest Ophthalmol Vis Sci. 55:6691–6703. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Li C and Baciu PC: Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 43:955–962. 2002.PubMed/NCBI | |
Yang JW, Lee SM, Oh KH, Park SG, Choi IW and Seo SK: Effects of topical chondrocyte-derived extracellular matrix treatment on corneal wound healing, following an alkali burn injury. Mol Med Rep. 11:461–467. 2015. | |
Iwanami H, Ishizaki M, Fukuda Y and Takahashi H: Expression of matrix metalloproteinases (MMP)-12 by myofibroblasts during alkali-burned corneal wound healing. Curr Eye Res. 34:207–214. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bian F, Pelegrino FS, Tukler Henriksson JT, Pflugfelder SC, Volpe EA, Li DQ and de Paiva CS: Differential Effects of Dexamethasone and Doxycycline on Inflammation and MMP Production in Murine Alkali-Burned Corneas Associated with Dry Eye. Ocul Surf. 14:242–254. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang SJ, Jo H, Kim KA, Ahn HR, Kang SW and Jung SH: Diospyros kaki Extract Inhibits Alkali Burn-Induced Corneal Neovascularization. J Med Food. 19:106–109. 2016. View Article : Google Scholar | |
Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C and Li X: Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoS One. 10:e01197252015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Lu H, Huang R, Lin D, Wu X, Lin Q, Wu X, Zheng J, Pan X, Peng J, et al: Peroxisome proliferator activated receptor-gamma ligands induced cell growth inhibition and its influence on matrix metalloproteinase activity in human myeloid leukemia cells. Cancer Chemother Pharmacol. 56:400–408. 2005. View Article : Google Scholar : PubMed/NCBI | |
Motoki T, Kurobe H, Hirata Y, Nakayama T, Kinoshita H, Rocco KA, Sogabe H, Hori T, Sata M and Kitagawa T: PPAR-γ agonist attenuates inflammation in aortic aneurysm patients. Gen Thorac Cardiovasc Surg. 63:565–571. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kato T, Saika S and Ohnishi Y: Effects of the matrix metalloproteinase inhibitor GM6001 on the destruction and alteration of epithelial basement membrane during the healing of post-alkali burn in rabbit cornea. Jpn J Ophthalmol. 50:90–95. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fini ME, Cui TY, Mouldovan A, Grobelny D, Galardy RE and Fisher SJ: An inhibitor of the matrix metalloproteinase synthesized by rabbit corneal epithelium. Invest Ophthalmol Vis Sci. 32:2997–3001. 1991.PubMed/NCBI |