1
|
Selkoe DJ: Alzheimer's disease is a
synaptic failure. Science. 298:789–791. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Deshpande A, Mina E, Glabe C and Busciglio
J: Different conformations of amyloid β induce neurotoxicity by
distinct mechanisms in human cortical neurons. J Neurosci.
26:6011–6018. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mrak RE and Griffin WST: Interleukin-1,
neuroinflammation, and Alzheimer's disease. Neurobiol Aging.
22:903–908. 2001. View Article : Google Scholar
|
4
|
Kim H, Youn K, Ahn MR, Kim OY, Jeong WS,
Ho CT and Jun M: Neuroprotective effect of loganin against
Aβ25–35-induced injury via the NF-κB-dependent signaling pathway in
PC12 cells. Food Funct. 6:1108–1116. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Block ML and Hong JS: Microglia and
inflammation-mediated neurodegeneration: Multiple triggers with a
common mechanism. Prog Neurobiol. 76:77–98. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ricote M and Glass CK: PPARs and molecular
mechanisms of transrepression. Biochim Biophys Acta. 1771:926–935.
2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Heneka MT and Landreth GE: PPARs in the
brain. Biochim Biophys Acta. 1771:1031–1045. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schnegg CI and Robbins ME: Neuroprotective
mechanisms of PPARδ: Modulation of oxidative stress and
inflammatory processes. PPAR Res. 2011:3735602011. View Article : Google Scholar
|
9
|
Biessels GJ, Staekenborg S, Brunner E,
Brayne C and Scheltens P: Risk of dementia in diabetes mellitus: A
systematic review. Lancet Neurol. 5:64–74. 2006. View Article : Google Scholar
|
10
|
Geldmacher DS, Fritsch T, McClendon MJ and
Landreth G: A randomized pilot clinical trial of the safety of
pioglitazone in treatment of patients with Alzheimer disease. Arch
Neurol. 68:45–50. 2011. View Article : Google Scholar
|
11
|
Sato T, Hanyu H, Hirao K, Kanetaka H,
Sakurai H and Iwamoto T: Efficacy of PPAR-γ agonist pioglitazone in
mild Alzheimer disease. Neurobiol Aging. 32:1626–1633. 2011.
View Article : Google Scholar
|
12
|
Pedersen WA, McMillan PJ, Kulstad JJ,
Leverenz JB, Craft S and Haynatzki GR: Rosiglitazone attenuates
learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol.
199:265–273. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Escribano L, Simón AM, Gimeno E,
Cuadrado-Tejedor M, López de Maturana R, García-Osta A, Ricobaraza
A, Pérez-Mediavilla A, Del Río J and Frechilla D: Rosiglitazone
rescues memory impairment in Alzheimer's transgenic mice:
Mechanisms involving a reduced amyloid and tau pathology.
Neuropsychopharmacology. 35:1593–1604. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rodriguez-Rivera J, Denner L and Dineley
KT: Rosiglitazone reversal of Tg2576 cognitive deficits is
independent of peripheral gluco-regulatory status. Behav Brain Res.
216:255–261. 2011. View Article : Google Scholar
|
15
|
Prickaerts J, Steinbusch HW, Smits JF and
de Vente J: Possible role of nitric oxide-cyclic GMP pathway in
object recognition memory: Effects of 7-nitroindazole and
zaprinast. Eur J Pharmacol. 337:125–136. 1997. View Article : Google Scholar
|
16
|
Ota KT, Pierre VJ, Ploski JE, Queen K and
Schafe GE: The NO-cGMP-PKG signaling pathway regulates synaptic
plasticity and fear memory consolidation in the lateral amygdala
via activation of ERK/MAP kinase. Learn Mem. 15:792–805. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wincott CM, Abera S, Vunck SA, Tirko N,
Choi Y, Titcombe RF, Antoine SO, Tukey DS, DeVito LM, Hofmann F, et
al: cGMP-dependent protein kinase type II knockout mice exhibit
working memory impairments, decreased repetitive behavior, and
increased anxiety-like traits. Neurobiol Learn Mem. 114:32–39.
2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Puzzo D, Loreto C, Giunta S, Musumeci G,
Frasca G, Podda MV, Arancio O and Palmeri A: Effect of
phosphodiesterase-5 inhibition on apoptosis and beta amyloid load
in aged mice. Neurobiol Aging. 35:520–531. 2014. View Article : Google Scholar
|
19
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pollack M, Phaneuf S, Dirks A and
Leeuwenburgh C: The role of apoptosis in the normal aging brain,
skeletal muscle, and heart. Ann NY Acad Sci. 959:93–107. 2002.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Reix S, Mechawar N, Susin SA, Quirion R
and Krantic S: Expression of cortical and hippocampal
apoptosis-inducing factor (AIF) in aging and Alzheimer's disease.
Neurobiol Aging. 28:351–356. 2007. View Article : Google Scholar
|
22
|
Galbán S and Duckett CS: XIAP as a
ubiquitin ligase in cellular signaling. Cell Death Differ.
17:54–60. 2010. View Article : Google Scholar :
|
23
|
Eckelman BP, Salvesen GS and Scott FL:
Human inhibitor of apoptosis proteins: Why XIAP is the black sheep
of the family. EMBO Rep. 7:988–994. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zheng H and Koo EH: Biology and
pathophysiology of the amyloid precursor protein. Mol Neurodegener.
6:272011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gadalla MM and Snyder SH: Hydrogen sulfide
as a gasotransmitter. J Neurochem. 113:14–26. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kamoun P: Endogenous production of
hydrogen sulfide in mammals. Amino Acids. 26:243–254. 2004.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Abe K and Kimura H: The possible role of
hydrogen sulfide as an endogenous neuromodulator. J Neurosci.
16:1066–1071. 1996.PubMed/NCBI
|
28
|
Enokido Y, Suzuki E, Iwasawa K, Namekata
K, Okazawa H and Kimura H: Cystathionine β-synthase, a key enzyme
for homocysteine metabolism, is preferentially expressed in the
radial glia/astrocyte lineage of developing mouse CNS. FASEB J.
19:1854–1856. 2005.PubMed/NCBI
|
29
|
Shibuya N, Mikami Y, Kimura Y, Nagahara N
and Kimura H: Vascular endothelium expresses 3-mercaptopyruvate
sulfurtransferase and produces hydrogen sulfide. J Biochem.
146:623–626. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kimura Y and Kimura H: Hydrogen sulfide
protects neurons from oxidative stress. FASEB J. 18:1165–1167.
2004.PubMed/NCBI
|
31
|
Yin WL, He JQ, Hu B, Jiang ZS and Tang XQ:
Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells.
Life Sci. 85:269–275. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore
PK, Wong PT and Bian JS: Hydrogen sulphide regulates calcium
homeostasis in microglial cells. Glia. 54:116–124. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kida K, Yamada M, Tokuda K, Marutani E,
Kakinohana M, Kaneki M and Ichinose F: Inhaled hydrogen sulfide
prevents neurodegeneration and movement disorder in a mouse model
of Parkinson's disease. Antioxid Redox Signal. 15:343–352. 2011.
View Article : Google Scholar :
|
34
|
Liu XQ, Liu XQ, Jiang P, Huang H and Yan
Y: Plasma levels of endogenous hydrogen sulfide and homocysteine in
patients with Alzheimer's disease and vascular dementia and the
significance thereof. Zhonghua Yi Xue Za Zhi. 88:2246–2249. 2008.In
Chinese. PubMed/NCBI
|
35
|
Xuan A, Long D, Li J, Ji W, Zhang M, Hong
L and Liu J: Hydrogen sulfide attenuates spatial memory impairment
and hippocampal neuroinflammation in β-amyloid rat model of
Alzheimer's disease. J Neuroinflammation. 9:2022012. View Article : Google Scholar
|
36
|
Laursen SE and Belknap JK:
Intracerebroventricular injections in mice. Some methodological
refinements. J Pharmacol Methods. 16:355–357. 1986. View Article : Google Scholar : PubMed/NCBI
|
37
|
Biagini G, D'Arcangelo G, Baldelli E,
D'Antuono M, Tancredi V and Avoli M: Impaired activation of CA3
pyramidal neurons in the epileptic hippocampus. Neuromolecular Med.
7:325–342. 2005. View Article : Google Scholar
|
38
|
Jin F, Gong Q-H, Xu Y-S, Wang LN, Jin H,
Li F, Li LS, Ma YM and Shi JS: Icariin, a phosphodiesterase-5
inhibitor, improves learning and memory in APP/PS1 transgenic mice
by stimulation of NO/cGMP signalling. Int J Neuropsychopharmacol.
17:871–881. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Amtul Z, Uhrig M and Beyreuther K:
Additive effects of fatty acid mixtures on the levels and ratio of
amyloid β40/42 peptides differ from the effects of individual fatty
acids. J Neurosci Res. 89:1795–1801. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kaminsky YG, Marlatt MW, Smith MA and
Kosenko EA: Subcellular and metabolic examination of amyloid-β
peptides in Alzheimer disease pathogenesis: Evidence for
Abeta(25-35). Exp Neurol. 221:26–37. 2010. View Article : Google Scholar
|
41
|
Gong QH, Wang Q, Pan LL, Liu XH, Huang H
and Zhu YZ: Hydrogen sulfide attenuates lipopolysaccharide-induced
cognitive impairment: A pro-inflammatory pathway in rats. Pharmacol
Biochem Behav. 96:52–58. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yuan J and Yankner BA: Apoptosis in the
nervous system. Nature. 407:802–809. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Morais Cardoso S, Swerdlow RH and Oliveira
CR: Induction of cytochrome c-mediated apoptosis by amyloid β 25–35
requires functional mitochondria. Brain Res. 931:117–125. 2002.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhong B, Hu Z, Tan J, Lu T, Lei Q, Chen C
and Zeng L: Hsp20 protects against oxygen-glucose
deprivation/reperfusion-induced Golgi fragmentation and apoptosis
through Fas/FasL pathway. Oxid Med Cell Longev. 2015:6069342015.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Ben Safta T, Ziani L, Favre L, Lamendour
L, Gros G, Mami-Chouaib F, Martinvalet D, Chouaib S and Thiery J:
Granzyme B-activated p53 interacts with Bcl-2 to promote cytotoxic
lymphocyte-mediated apoptosis. J Immunol. 194:418–428. 2015.
View Article : Google Scholar
|
46
|
Nicholson DW, Ali A, Thornberry NA,
Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle
M, Lazebnik YA, et al: Identification and inhibition of the
ICE/CED-3 protease necessary for mammalian apoptosis. Nature.
376:37–43. 1995. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zuo C, Huang YM, Jiang R, Yang HF, Cheng B
and Chen F: Endogenous hydrogen sulfide and androgen
deficiency-induced erectile dysfunction in rats. Zhonghua Nan Ke
Xue. 20:605–612. 2014.In Chinese. PubMed/NCBI
|
48
|
Leonardi R and Alemanni M: The management
of erectile dysfunction: Innovations and future perspectives. Arch
Ital Urol Androl. 83:60–62. 2011.PubMed/NCBI
|
49
|
Srilatha B, Muthulakshmi P, Adaikan PG and
Moore PK: Endogenous hydrogen sulfide insufficiency as a predictor
of sexual dysfunction in aging rats. Aging Male. 15:153–158. 2012.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Orejana L, Barros-Miñones L, Jordan J,
Cedazo-Minguez A, Tordera RM, Aguirre N and Puerta E: Sildenafil
decreases BACE1 and cathepsin B levels and reduces APP
amyloidogenic processing in the SAMP8 mouse. J Gerontol A Biol Sci
Med Sci. 70:675–685. 2015. View Article : Google Scholar
|
51
|
Palmeri A, Privitera L, Giunta S, Loreto C
and Puzzo D: Inhibition of phosphodiesterase-5 rescues age-related
impairment of synaptic plasticity and memory. Behav Brain Res.
240:11–20. 2013. View Article : Google Scholar
|
52
|
Bucci M, Papapetropoulos A, Vellecco V,
Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V and
Cirino G: Hydrogen sulfide is an endogenous inhibitor of
phosphodiesterase activity. Arterioscler Thromb Vasc Biol.
30:1998–2004. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ott A, Stolk RP, van Harskamp F, Pols HA,
Hofman A and Breteler MM: Diabetes mellitus and the risk of
dementia: The Rotterdam Study. Neurology. 53:1937–1942. 1999.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Leibson CL, Rocca WA, Hanson VA, Cha R,
Kokmen E, O'Brien PC and Palumbo PJ: Risk of dementia among persons
with diabetes mellitus: A population-based cohort study. Am J
Epidemiol. 145:301–308. 1997. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kivipelto M, Ngandu T, Fratiglioni L,
Viitanen M, Kåreholt I, Winblad B, Helkala EL, Tuomilehto J,
Soininen H and Nissinen A: Obesity and vascular risk factors at
midlife and the risk of dementia and Alzheimer disease. Arch
Neurol. 62:1556–1560. 2005. View Article : Google Scholar : PubMed/NCBI
|
56
|
Abdelrahman M, Sivarajah A and Thiemermann
C: Beneficial effects of PPAR-γ ligands in ischemia-reperfusion
injury, inflammation and shock. Cardiovasc Res. 65:772–781. 2005.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Fakhfouri G, Ahmadiani A, Rahimian R,
Grolla AA, Moradi F and Haeri A: WIN55212-2 attenuates
amyloid-beta-induced neuroinflammation in rats through activation
of cannabinoid receptors and PPAR-γ pathway. Neuropharmacology.
63:653–666. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zolezzi JM, Silva-Alvarez C, Ordenes D,
Godoy JA, Carvajal FJ, Santos MJ and Inestrosa NC: Peroxisome
proliferator-activated receptor (PPAR) γ and PPARα agonists
modulate mitochondrial fusion-fission dynamics: Relevance to
reactive oxygen species (ROS)-related neurodegenerative disorders?
PLoS One. 8:e640192013. View Article : Google Scholar
|
59
|
Li AC, Binder CJ, Gutierrez A, Brown KK,
Plotkin CR, Pattison JW, Valledor AF, Davis RA, Willson TM, Witztum
JL, et al: Differential inhibition of macrophage foam-cell
formation and atherosclerosis in mice by PPARalpha, β/δ, and γ. J
Clin Invest. 114:1564–1576. 2004. View Article : Google Scholar : PubMed/NCBI
|
60
|
Berghe WV, Vermeulen L, Delerive P, De
Bosscher K, Staels B and Haegeman G: A paradigm for gene
regulation: Inflammation, NF-κB and PPAR. Adv Exp Med Biol.
544:181–196. 2003. View Article : Google Scholar
|
61
|
Bannon A, Zhang SD, Schock BC and Ennis M:
Cystic fibrosis from laboratory to bedside: The role of A20 in
NF-κB-mediated inflammation. Med Princ Pract. 24:301–310. 2015.
View Article : Google Scholar
|
62
|
Chong ZZ, Li F and Maiese K:
Erythropoietin requires NF-kappaB and its nuclear translocation to
prevent early and late apoptotic neuronal injury during β-amyloid
toxicity. Curr Neurovasc Res. 2:387–399. 2005. View Article : Google Scholar : PubMed/NCBI
|