1
|
Selman M, Pardo A and Kaminski N:
Idiopathic pulmonary fibrosis: aberrant recapitulation of
developmental programs? PLoS Med. 5:e622008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Song X, Liu W, Xie S, Wang M, Cao G, Mao C
and Lv C: All-transretinoic acid ameliorates bleomycin-induced lung
fibrosis by downregulating the TGF-β1/Smad3 signaling pathway in
rats. Lab Invest. 93:1219–1231. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pandit KV, Corcoran D, Yousef H,
Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh
M, Handley D, et al: Inhibition and role of let-7d in idiopathic
pulmonary fibrosis. Am J Respir Crit Care Med. 182:220–229. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kriz W, Kaissling B and Le Hir M:
Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or
fantasy? J Clin Invest. 121:468–474. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Willis BC, Liebler JM, Luby-Phelps K,
Nicholson AG, Crandall ED, du Bois RM and Borok Z: Induction of
epithelial-mesenchymal transition in alveolar epithelial cells by
transforming growth factor-beta1: potential role in idiopathic
pulmonary fibrosis. Am J Pathol. 166:1321–1332. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Hu WQ, Wang LW, Yuan JP, Yan SG, Li JD,
Zhao HL, Peng CW, Yang GF and Li Y: High expression of transform
growth factor beta 1 in gastric cancer confers worse outcome:
results of a cohort study on 184 patients. Hepatogastroenterology.
61:245–250. 2014.PubMed/NCBI
|
8
|
Vincent T, Neve EP, Johnson JR, Kukalev A,
Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL,
et al: A SNAIL1-SMAD3/4 transcriptional repressor complex promotes
TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol.
11:943–950. 2009. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Sime PJ, Marr RA, Gauldie D, Xing Z,
Hewlett BR, Graham FL and Gauldie J: Transfer of tumor necrosis
factor-alpha to rat lung induces severe pulmonary inflammation and
patchy interstitial fibrogenesis with induction of transforming
growth factor-beta1 and myofibroblasts. Am J Pathol. 153:825–832.
1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Serini G and Gabbiani G: Mechanisms of
myofibroblast activity and phenotypic modulation. Exp Cell Res.
250:273–283. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Schürch W, Seemayer TA and Gabbiani G: The
myofibroblast: a quarter century after its discovery. Am J Surg
Pathol. 22:141–147. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Munger JS, Huang X, Kawakatsu H, Griffiths
MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, et
al: The integrin alpha v beta 6 binds and activates latent TGF beta
1: a mechanism for regulating pulmonary inflammation and fibrosis.
Cell. 96:319–328. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
D'Alessandro-Gabazza CN, Kobayashi T,
Boveda-Ruiz D, Takagi T, Toda M, Gil-Bernabe P, Miyake Y, Yasukawa
A, Matsuda Y, Suzuki N, et al: Development and preclinical efficacy
of novel transforming growth factor-β1 short interfering RNAs for
pulmonary fibrosis. Am J Respir Cell Mol Biol. 46:397–406. 2012.
View Article : Google Scholar
|
14
|
Dong XS, Hu XB, Liu W, Sun YQ and Liu Z:
Effects of RNA interference-induced Smad3 gene silencing on
pulmonary fibrosis caused by paraquat in mice. Exp Biol Med
(Maywood). 237:548–555. 2012. View Article : Google Scholar
|
15
|
Xiao J, Meng XM, Huang XR, Chung AC, Feng
YL, Hui DS, Yu CM, Sung JJ and Lan HY: miR-29 inhibits
bleomycin-induced pulmonary fibrosis in mice. Mol Ther.
20:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Roush S and Slack FJ: The let-7 family of
microRNAs. Trends Cell Biol. 18:505–516. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gregory PA, Bert AG, Paterson EL, Barry
SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ:
The miR-200 family and miR-205 regulate epithelial to mesenchymal
transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601.
2008. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Liang YJ, Wang QY, Zhou CX, Yin QQ, He M,
Yu XT, Cao DX, Chen GQ, He JR and Zhao Q: MiR-124 targets Slug to
regulate epithelial-mesenchymal transition and metastasis of breast
cancer. Carcinogenesis. 34:713–722. 2013. View Article : Google Scholar
|
19
|
Pottier N, Maurin T, Chevalier B,
Puisségur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino
Cardenas CL, Courcot E, Rios G, et al: Identification of
keratinocyte growth factor as a target of microRNA-155 in lung
fibroblasts: implication in epithelial-mesenchymal interactions.
PLoS One. 4:e67182009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu G, Friggeri A, Yang Y, Milosevic J,
Ding Q, Thannickal VJ, Kaminski N and Abraham E: miR-21 mediates
fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J
Exp Med. 207:1589–1597. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cushing L, Kuang P and Lü J: The role of
miR-29 in pulmonary fibrosis. Biochem Cell Biol. 93:109–118. 2015.
View Article : Google Scholar
|
22
|
Su A, He S, Tian B, Hu W and Zhang Z:
MicroRNA-221 mediates the effects of PDGF-BB on migration,
proliferation, and the epithelial-mesenchymal transition in
pancreatic cancer cells. PLoS One. 8:e713092013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hwang MS, Yu N, Stinson SY, Yue P, Newman
RJ, Allan BB and Dornan D: miR-221/222 targets adiponectin receptor
1 to promote the epithelial-to-mesenchymal transition in breast
cancer. PLoS One. 8:e665022013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu J, Cao J and Zhao X: miR-221
facilitates the TGFbeta1-induced epithelial-mesenchymal transition
in human bladder cancer cells by targeting STMN1. BMC Urol.
15:362015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Glowacki F, Savary G, Gnemmi V, Buob D,
Van der Hauwaert C, Lo-Guidice JM, Bouyé S, Hazzan M, Pottier N,
Perrais M, et al: Increased circulating miR-21 levels are
associated with kidney fibrosis. PLoS One. 8:e580142013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ogawa T, Enomoto M, Fujii H, Sekiya Y,
Yoshizato K, Ikeda K and Kawada N: MicroRNA-221/222 upregulation
indicates the activation of stellate cells and the progression of
liver fibrosis. Gut. 61:1600–1609. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hecker L, Vittal R, Jones T, Jagirdar R,
Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ and Thannickal
VJ: NADPH oxidase-4 mediates myofibroblast activation and
fibrogenic responses to lung injury. Nat Med. 15:1077–1081. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Moeller A, Ask K, Warburton D, Gauldie J
and Kolb M: The bleomycin animal model: a useful tool to
investigate treatment options for idiopathic pulmonary fibrosis?
Int J Biochem Cell Biol. 40:362–382. 2008. View Article : Google Scholar
|
29
|
Weiss DJ, Strandjord TP, Liggitt D and
Clark JG: Perflubron enhances adenovirus-mediated gene expression
in lungs of transgenic mice with chronic alveolar filling. Hum Gene
Ther. 10:2287–2293. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lino Cardenas CL, Kaminski N and Kass DJ:
Micromanaging microRNAs: using murine models to study microRNAs in
lung fibrosis. Drug Discov Today Dis Models. 10:e145–e151. 2013.
View Article : Google Scholar
|
31
|
Di J, Jiang L, Zhou Y, Cao H, Fang L, Wen
P, Li X, Dai C and Yang J: Ets-1 targeted by microrna-221 regulates
angiotensin II-induced renal fibroblast activation and fibrosis.
Cell Physiol Biochem. 34:1063–1074. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Stinson S, Lackner MR, Adai AT, Yu N, Kim
HJ, O'Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, et
al: miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1)
promotes epithelial-to-mesenchymal transition in breast cancer. Sci
Signa. l4:pt52011.
|
33
|
Liu Q, Liu T, Zheng S, Gao X, Lu M,
Sheyhidin I and Lu X: HMGA2 is down-regulated by microRNA let-7 and
associated with epithelial-mesenchymal transition in oesophageal
squamous cell carcinomas of Kazakhs. Histopathology. 65:408–417.
2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang P, Bai H, Liu G, Wang H, Chen F,
Zhang B, Zeng P, Wu C, Peng C, Huang C, et al: MicroRNA-33b,
upregulated by EF24, a curcumin analog, suppresses the
epithelial-to-mesenchymal transition (EMT) and migratory potential
of melanoma cells by targeting HMGA2. Toxicol Lett. 234:151–161.
2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
De Martino I, Visone R, Fedele M, Petrocca
F, Palmieri D, Martinez Hoyos J, Forzati F, Croce CM and Fusco A:
Regulation of microRNA expression by HMGA1 proteins. Oncogene.
28:1432–1442. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kaddar T, Rouault JP, Chien WW, Chebel A,
Gadoux M, Salles G, Ffrench M and Magaud JP: Two new miR-16
targets: caprin-1 and HMGA1, proteins implicated in cell
proliferation. Biol Cell. 101:511–524. 2009. View Article : Google Scholar : PubMed/NCBI
|