1
|
Meirelles L, Arvidsson A, Andersson M,
Kjellin P, Albrektsson T and Wennerberg A: Nano hydroxyapatite
structures influence early bone formation. J Biomed Mater Res A.
87:299–307. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kujala S, Ryhänen J, Danilov A and
Tuukkanen J: Effect of porosity on the osteointegration and bone
ingrowth of a weight-bearing nickel-titanium bone graft substitute.
Biomaterials. 24:4691–4697. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen BL, Xie DH, Zheng ZM, Lu W, Ning CY,
Li YQ, Li FB and Liao WM: Comparison of the effects of alendronate
sodium and calcitonin on bone-prosthesis osseointegration in
osteoporotic rats. Osteoporos Int. 22:265–270. 2011. View Article : Google Scholar
|
4
|
Ohkawa Y, Tokunaga K and Endo N:
Intermittent administration of human parathyroid hormone (1–34)
increases new bone formation on the interface of
hydroxyapatitecoated titanium rods implanted into ovariectomized
rat femora. J Orthop Sci. 13:533–542. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boden SD, Kang J, Sandhu H and Heller JG:
Use of recombinant human bone morphogenetic protein-2 to achieve
posterolateral lumbar spine fusion in humans: a prospective,
randomized clinical pilot trial: 2002 Volvo Award in clinical
studies. Spine. 27:2662–2673. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hokugo A, Saito T, Li A, Sato K, Tabata Y
and Jarrahy R: Stimulation of bone regeneration following the
controlled release of water-insoluble oxysterol from biodegradable
hydrogel. Biomaterials. 35:5565–5571. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rizzoli R, Reginster JY, Boonen S, Bréart
G, Diez-Perez A, Felsenberg D, Kaufman JM, Kanis JA and Cooper C:
Adverse reactions and drug-drug interactions in the management of
women with postmenopausal osteoporosis. Calcif Tissue Int.
89:91–104. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Frost HMA: A 2003 update of bone
physiology and Wolff's Law for clinicians. Angle Orthod. 74:3–15.
2004.PubMed/NCBI
|
9
|
Burr DB, Robling AG and Turner CH: Effects
of biomechanical stress on bones in animals. Bone. 30:781–786.
2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rubin C, Recker R, Cullen D, Ryaby J,
McCabe J and McLeod K: Prevention of postmenopausal bone loss by a
low-magnitude, high-frequency mechanical stimuli: a clinical trial
assessing compliance, efficacy, and safety. J Bone Miner Res.
19:343–351. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rubin C, Turner AS, Bain S, Mallinckrodt C
and McLeod K: Anabolism. Low mechanical signals strengthen long
bones. Nature. 412:603–604. 2001. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Xie L, Jacobson JM, Choi ES, Busa B,
Donahue LR, Miller LM, Rubin CT and Judex S: Low-level mechanical
vibrations can influence bone resorption and bone formation in the
growing skeleton. Bone. 39:1059–1066. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rubin C, Turner AS, Müller R, Mittra E,
McLeod K, Lin W and Qin YX: Quantity and quality of trabecular bone
in the femur are enhanced by a strongly anabolic, noninvasive
mechanical intervention. J Bone Miner Res. 17:349–357. 2002.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Garman R, Gaudette G, Donahue LR, Rubin C
and Judex S: Low-level accelerations applied in the absence of
weight bearing can enhance trabecular bone formation. J Orthop Res.
25:732–740. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Judex S, Lei X, Han D and Rubin C:
Low-magnitude mechanical signals that stimulate bone formation in
the ovariectomized rat are dependent on the applied frequency but
not on the strain magnitude. J Biomech. 40:1333–1339. 2007.
View Article : Google Scholar
|
16
|
De Smet E, Jaecques SV, Wevers M, Jansen
JA, Jacobs R, Sloten JV and Naert IE: Effect of controlled early
implant loading on bone healing and bone mass in guinea pigs, as
assessed by micro-CT and histology. Eur J Oral Sci. 114:232–242.
2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ogawa T, Possemiers T, Zhang X, Naert I,
Chaudhari A, Sasaki K and Duyck J: Influence of whole-body
vibration time on peri-implant bone healing: a histomorphometrical
animal study. J Clin Periodontol. 38:180–185. 2011. View Article : Google Scholar
|
18
|
Ogawa T, Zhang X, Naert I, Vermaelen P,
Deroose CM, Sasaki K and Duyck J: The effect of whole-body
vibration on peri-implant bone healing in rats. Clin Oral Implants
Res. 22:302–307. 2011. View Article : Google Scholar
|
19
|
Chen B, Li Y, Xie D and Yang X:
Low-magnitude high-frequency loading via whole body vibration
enhances bone-implant osseointegration in ovariectomized rats. J
Orthop Res. 30:733–739. 2012. View Article : Google Scholar
|
20
|
Liu X, Bao C, Hu J, Yin G and Luo E:
Effects of clodronate combined with hydroxyapatite on
multi-directional differentiation of mesenchymal stromal cells.
Arch Med Sci. 6:670–677. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fassina L, Saino E, Sbarra MS, Visai L, De
Angelis MG, Magenes G and Benazzo F: In vitro electromagnetically
stimulated SAOS-2 osteoblasts inside porous hydroxyapatite. J
Biomed Mater Res A. 93:1272–1279. 2010.
|
22
|
Gong SH, Lee H, Pae A, Noh K, Shin YM, Lee
JH and Woo YH: Gene expression of MC3T3-E1 osteoblastic cells on
titanium and zirconia surface. J Adv Prosthodont. 5:416–422. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Di Palma F, Chamson A, Lafage-Proust MH,
Jouffray P, Sabido O, Peyroche S, Vico L and Rattner A:
Physiological strains remodel extracellular matrix and cell-cell
adhesion in osteoblastic cells cultured on alumina-coated titanium
alloy. Biomaterials. 25:2565–2575. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lacouture ME, Schaffer JL and Klickstein
LB: A comparison of type I collagen, fibronectin, and vitronectin
in supporting adhesion of mechanically strained osteoblasts. J Bone
Miner Res. 17:481–492. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Patel MJ, Chang KH, Sykes MC, Talish R,
Rubin C and Jo H: Low magnitude and high frequency mechanical
loading prevents decreased bone formation responses of 2T3
preosteoblasts. J Cell Biochem. 106:306–316. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou Y, Guan X, Zhu Z, Gao S, Zhang C, Li
C, Zhou K, Hou W and Yu H: Osteogenic differentiation of bone
marrow-derived mesenchymal stromal cells on bone-derived scaffolds:
effect of microvibration and role of ERK1/2 activation. Eur Cell
Mater. 22:12–25. 2011.PubMed/NCBI
|
27
|
Prè D, Ceccarelli G, Visai L, Benedetti L,
Imbriani M, Cusella De Angelis MG and Magenes G: High-frequency
vibration treatment of human bone marrow stromal cells increases
differentiation toward bone tissue. Bone Marrow Res.
2013:8034502013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Robinson JA, Chatterjee-Kishore M,
Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P,
Brown EL, et al: Wnt/beta-catenin signaling is a normal
physiological response to mechanical loading in bone. J Biol Chem.
281:31720–31728. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Premaraj S, Souza I and Premaraj T:
Mechanical loading activates β-catenin signaling in periodontal
ligament cells. Angle Orthod. 81:592–599. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hou WW, Zhu ZL, Zhou Y, Zhang CX and Yu
HY: Involvement of Wnt activation in the micromechanical
vibration-enhanced osteogenic response of osteoblasts. J Orthop
Sci. 16:598–605. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kubota T, Michigami T and Ozono K: Wnt
signaling in bone metabolism. J Bone Miner Metab. 27:265–271. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang C, Li J, Zhang L, Zhou Y, Hou W,
Quan H, Li X, Chen Y and Yu H: Effects of mechanical vibration on
proliferation and osteogenic differentiation of human periodontal
ligament stem cells. Arch Oral Biol. 57:1395–1407. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim IS, Song YM, Lee B and Hwang SJ: Human
mesenchymal stromal cells are mechanosensitive to vibration
stimuli. J Dent Res. 91:1135–1140. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lau E, Lee WD, Li J, Xiao A, Davies JE, Wu
Q, Wang L and You L: Effect of low-magnitude, high-frequency
vibration on osteogenic differentiation of rat mesenchymal stromal
cells. J Orthop Res. 29:1075–1080. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Roy M, Fielding GA, Beyenal H,
Bandyopadhyay A and Bose S: Mechanical, in vitro antimicrobial, and
biological properties of plasma-sprayed silver-doped hydroxyapatite
coating. ACS Appl Mater Interfaces. 4:1341–1349. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Su B, Peng X, Jiang D, Wu J, Qiao B, Li W
and Qi X: In vitro and in vivo evaluations of
nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) as a
novel bioactive bone screw. PLoS One. 8:e683422013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Duan Y, Zhu S, Guo F, Zhu J, Li M, Ma J
and Zhu Q: The effect of adhesive strength of hydroxyapatite
coating on the stability of hydroxyapatite-coated prostheses in
vivo at the early stage of implantation. Arch Med Sci. 8:199–208.
2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Olivares-Navarrete R, Hyzy SL, Hutton DL,
Erdman CP, Wieland M, Boyan BD and Schwartz Z: Direct and indirect
effects of microstructured titanium substrates on the induction of
mesenchymal stem cell differentiation towards the osteoblast
lineage. Biomaterials. 31:2728–2735. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Puleo DA and Nanci A: Understanding and
controlling the bone-implant interface. Biomaterials. 20:2311–2321.
1999. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dumas V, Ducharne B, Perrier A, Fournier
C, Guignandon A, Thomas M, Peyroche S, Guyomar D, Vico L and
Rattner A: Extracellular matrix produced by osteoblasts cultured
under low-magnitude, high-frequency stimulation is favourable to
osteogenic differentiation of mesenchymal stem cells. Calcif Tissue
Int. 87:351–364. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sato K, Adachi T, Matsuo M and Tomita Y:
Quantitative evaluation of threshold fiber strain that induces
reorganization of cytoskeletal actin fiber structure in
osteoblastic cells. J Biomech. 38:1895–1901. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zheng L, Song J, Li Z, Fan Y, Zhao Z, Chen
Y, Deng F and Hu Y: The mechanism of myoblast deformation in
response to cyclic strain - A cytomechanical study. Cell Biol Int.
32:754–760. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wixler V, Geerts D, Laplantine E, Westhoff
D, Smyth N, Aumailley M, Sonnenberg A and Paulsson M: The LIM-only
protein DRAL/FHL2 binds to the cytoplasmic domain of several alpha
and beta integrin chains and is recruited to adhesion complexes. J
Biol Chem. 275:33669–33678. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Mierke CT: The role of vinculin in the
regulation of the mechanical properties of cells. Cell Biochem
Biophys. 53:115–126. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mierke CT: The role of focal adhesion
kinase in the regulation of cellular mechanical properties. Phys
Biol. 10:0650052013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Carvalho RS, Scott JE and Yen EH: The
effects of mechanical stimulation on the distribution of beta 1
integrin and expression of beta 1-integrin mRNA in TE-85 human
osteosarcoma cells. Arch Oral Biol. 40:257–264. 1995. View Article : Google Scholar : PubMed/NCBI
|
47
|
Marie PJ: Transcription factors
controlling osteoblastogenesis. Arch Biochem Biophys. 473:98–105.
2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Nakashima K and de Crombrugghe B:
Transcriptional mechanisms in osteoblast differentiation and bone
formation. Trends Genet. 19:458–466. 2003. View Article : Google Scholar : PubMed/NCBI
|
49
|
Owen TA, Aronow M, Shalhoub V, Barone LM,
Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB and Stein
GS: Progressive development of the rat osteoblast phenotype in
vitro: reciprocal relationships in expression of genes associated
with osteoblast proliferation and differentiation during formation
of the bone extracellular matrix. J Cell Physiol. 143:420–430.
1990. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mantila Roosa SM, Liu Y and Turner CH:
Gene expression patterns in bone following mechanical loading. J
Bone Miner Res. 26:100–112. 2011. View Article : Google Scholar
|
51
|
Winkler DG, Sutherland MK, Geoghegan JC,
Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR,
Staehling-Hampton K, et al: Osteocyte control of bone formation via
sclerostin, a novel BMP antagonist. EMBO J. 22:6267–6276. 2003.
View Article : Google Scholar : PubMed/NCBI
|