1
|
Guha S, Eibl G, Kisfalvi K, Fan RS,
Burdick M, Reber H, Hines OJ, Strieter R and Rozengurt E:
Broad-spectrum G protein-coupled receptor antagonist,
[D-Arg1,D-Trp5,7,9,Leu11] SP: a dual inhibitor of growth and
angiogenesis in pancreatic cancer. Cancer Res. 65:2738–2745. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Esteban F, Muñoz M, González-Moles MA and
Rosso M: A role for substance P in cancer promotion and
progression: a mechanism to counteract intracellular death signals
following oncogene activation or DNA damage. Cancer Metastasis Rev.
25:137–145. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Muñoz M, Rosso M and Coveñas R: A new
frontier in the treatment of cancer: NK-1 receptor antagonists.
Curr Med Chem. 17:504–516. 2010. View Article : Google Scholar
|
4
|
Samsam M, Coveñas R, Ahangari R, Yajeya J,
Narváez JA and Tramu G: Simultaneous depletion of neurokinin A,
substance P and calcitonin gene-related peptide from the caudal
trigeminal nucleus of the rat during electrical stimulation of the
trigeminal ganglion. Pain. 84:389–395. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bang R, Sass G, Kiemer AK, Vollmar AM,
Neuhuber WL and Tiegs G: Neurokinin-1 receptor antagonists
CP-96,345 and L-733,060 protect mice from cytokine-mediated liver
injury. J Pharmacol Exp Ther. 305:31–39. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Muñoz M and Rosso M: The NK-1 receptor
antagonist aprepitant as a broad spectrum antitumor drug. Invest
New Drugs. 28:187–193. 2010. View Article : Google Scholar
|
7
|
Samsam M, Coveñas R, Csillik B, Ahangari
R, Yajeya J, Riquelme R, Narváez JA and Tramu G: Depletion of
substance P, neurokinin A and calcitonin gene-related peptide from
the contralateral and ipsilateral caudal trigeminal
nucleusfollowing unilateral electrical stimulation of the
trigeminal ganglion; apossible neurophysiological and
neuroanatomical link to generalized head pain. J Chem Neuroanat.
21:161–169. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Muñoz M and Coveñas R: Involvement of
substance P and the NK-1 receptor in cancer progression. Peptides.
48:1–9. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Maeno H, Kiyama H and Tohyama M:
Distribution of the substance P receptor (NK-1 receptor) in the
central nervous system. Brain Res Mol Brain Res. 18:43–58. 1993.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Saffroy M, Beaujouan JC, Torrens Y,
Besseyre J, Bergström L and Glowinski J: Localization of tachykinin
binding sites (NK1, NK2, NK3 ligands) in the rat brain. Peptides.
9:227–241. 1988. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wolf SS, Moody TW, Quirion R and O'Donohue
TL: Biochemical characterization and autoradiographic localization
of central substance P receptors using [125I]physalaemin. Brain
Res. 332:299–307. 1985. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lieb K, Schaller H, Bauer J, Berger M,
Schulze-Osthoff K and Fiebich BL: Substance P and histamine induce
interleukin-6 expression in human astrocytoma cells by a mechanism
involving protein kinase C and nuclear factor-IL-6. J Neurochem.
70:1577–1583. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lieb K, Fiebich BL, Berger M, Bauer J and
Schulze-Osthoff K: The neuropeptide substance P activates
transcription factor NF-kappa B and kappa B-dependent gene
expression in human astrocytoma cells. J Immunol. 159:4952–4958.
1997.PubMed/NCBI
|
14
|
Horuk R, Martin AW, Wang Z, Schweitzer L,
Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, et
al: Expression of chemokine receptors by subsets of neurons in the
central nervous system. J Immunol. 158:2882–2890. 1997.PubMed/NCBI
|
15
|
Kim SY, Bae JC, Kim JY, Lee HL, Lee KM,
Kim DS and Cho HJ: Activation of p38 MAP kinase in the rat dorsal
root ganglia and spinal cord following peripheral inflammation and
nerve injury. Neuroreport. 13:2483–2486. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ji RR, Befort K, Brenner GJ and Woolf CJ:
ERK MAP kinase activation in superficial spinal cord neurons
induces prodynorphin and NK-1 upregulation and contributes to
persistent inflammatory pain hypersensitivity. J Neurosci.
22:478–485. 2002.PubMed/NCBI
|
17
|
Jin SX, Zhuang ZY, Woolf CJ and Ji RR: p38
mitogen-activated protein kinase is activated after a spinal nerve
ligation in spinal cord microglia and dorsal root ganglion neurons
and contributes to the generation of neuropathic pain. J Neurosci.
23:4017–4022. 2003.PubMed/NCBI
|
18
|
Huang WJ, Wang BR, Yao LB, Huang CS, Wang
X, Zhang P, Jiao XY, Duan XL, Chen BF and Ju G: Activity of p44/42
MAP kinase in the caudal subnucleus of trigeminal spinal nucleus is
increased following perioral noxious stimulation in the mouse.
Brain Res. 861:181–185. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ji RR, Baba H, Brenner GJ and Woolf CJ:
Nociceptive-specific activation of ERK in spinal neurons
contributes to pain hypersensitivity. Nat Neurosci. 2:1114–1119.
1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lazarewicz JW, Wroblewski JT and Costa E:
N-methyl-D-aspartate-sensitive glutamate receptors induce
calcium-mediated arachidonic acid release in primary cultures of
cerebellar granule cells. J Neurochem. 55:1875–1881. 1990.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim DK, Rordorf G, Nemenoff RA, Koroshetz
WJ and Bonventre JV: Glutamate stably enhances the activity of two
cytosolic forms of phospholipase A2 in brain cortical cultures.
Biochem J. 310:83–90. 1995. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen QR, Miyaura C, Higashi S, Murakami M,
Kudo I, Saito S, Hiraide T, Shibasaki Y and Suda T: Activation of
cytosolic phospholipase A2 by platelet-derived growth factor is
essential for cyclooxygenase-2-dependent prostaglandin E2 synthesis
in mouse osteoblasts cultured with interleukin-1. J Biol Chem.
272:5952–5958. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zeilhofer HU, Swandulla D, Geisslinger G
and Brune K: Differential effects of ketamine enantiomers on NMDA
receptor currents in cultured neurons. Eur J Pharmacol.
213:155–158. 1992. View Article : Google Scholar : PubMed/NCBI
|
24
|
Okamoto T, Minami K, Uezono Y, Ogata J,
Shiraishi M, Shigematsu A and Ueta Y: The inhibitory effects of
ketamine and pentobarbital on substance p receptors expressed in
Xenopus oocytes. Anesth Analg. 97:104–110. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mazar J, Rogachev B, Shaked G, Ziv NY,
Czeiger D, Chaimovitz C, Zlotnik M, Mukmenev I, Byk G and
Douvdevani A: Involvement of adenosine in the antiinflammatory
action of ketamine. Anesthesiology. 102:1174–1181. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu Y, Li W and Zhou C, Lu F, Gao T, Liu Y,
Cao J, Zhang Y, Zhang Y and Zhou C: Ketamine inhibits
lipopolysaccharide-induced astrocytes activation by suppressing
TLR4/NF-ĸB pathway. Cell Physiol Biochem. 30:609–617. 2012.
View Article : Google Scholar
|
27
|
Heuillet E, Ménager J, Fardin V, Flamand
O, Bock M, Garret C, Crespo A, Fallourd AM and Doble A:
Characterization of a human NK1 tachykinin receptor in the
astrocytoma cell line U 373 MG. J Neurochem. 60:868–876. 1993.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Domino EF, Zsigmond EK, Domino LE, Domino
KE, Kothary SP and Domino SE: Plasma levels of ketamine and two of
its metabolites in surgical patients using a gas chromatographic
mass fragmentographic assay. Anesth Analg. 61:87–92. 1982.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Niranjan R: The role of inflammatory and
oxidative stress mechanisms in the pathogenesis of Parkinson's
disease: focus on astrocytes. Mol Neurobiol. 49:28–38. 2014.
View Article : Google Scholar
|
30
|
Simões AP, Duarte JA, Agasse F, Canas PM,
Tomé AR, Agostinho P and Cunha RA: Blockade of adenosine A2A
receptors prevents interleukin-1β-induced exacerbation of neuronal
toxicity through a p38 mitogen-activated protein kinase pathway. J
Neuroinflammation. 9:2042012. View Article : Google Scholar
|
31
|
Minagar A, Shapshak P, Fujimura R, Ownby
R, Heyes M and Eisdorfer C: The role of macrophage/microglia and
astrocytes in the pathogenesis of three neurologic disorders:
HIV-associated dementia, Alzheimer disease, and multiple sclerosis.
J Neurol Sci. 202:13–23. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
García-Bueno B, Madrigal JL, Lizasoain I,
Moro MA, Lorenzo P and Leza JC: Peroxisome proliferator-activated
receptor gamma activation decreases neuroinflammation in brain
after stress in rats. Biol Psychiatry. 57:885–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu GJ, Chen TL, Ueng YF and Chen RM:
Ketamine inhibits tumor necrosis factor-alpha and interleukin-6
gene expressions in lipopolysaccharide-stimulated macrophages
through suppression of Toll-like receptor 4-mediated c-Jun
N-terminal kinase phosphorylation and activator protein-1
activation. Toxicol Appl Pharmacol. 228:105–113. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chang HC, Lin KH, Tai YT, Chen JT and Chen
RM: Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and
oxidative stress production in macrophages are suppressed by
ketamine through downregulating Toll-like receptor 2-mediated
activation oF ERK1/2 and NFκB. Shock. 33:485–492. 2010.
|
35
|
Milligan ED and Watkins LR: Pathological
and protective roles of glia in chronic pain. Nat Rev Neurosci.
10:23–36. 2009. View
Article : Google Scholar :
|
36
|
Shibakawa YS, Sasaki Y, Goshima Y, Echigo
N, Kamiya Y, Kurahashi K, Yamada Y and Andoh T: Effects of ketamine
and propofol on inflammatory responses of primary glial cell
cultures stimulated with lipopolysaccharide. Br J Anaesth.
95:803–810. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sun J, Ramnath RD, Zhi L, Tamizhselvi R
and Bhatia M: Substance P enhances NF-kappaB transactivation and
chemokine response in murine macrophages via ERK1/2 and p38 MAPK
signaling pathways. Am J Physiol Cell Physiol. 294:C1586–C1596.
2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fiebich BL, Schleicher S, Butcher RD,
Craig A and Lieb K: The neuropeptide substance P activates p38
mitogen-activated protein kinase resulting in IL-6 expression
independently from NF-kappaB. J Immunol. 165:5606–5611. 2000.
View Article : Google Scholar : PubMed/NCBI
|