Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review)
- Authors:
- Gary Tse
- Tong Liu
- Ka Hou Christien Li
- Victoria Laxton
- Andy On‑Tik Wong
- Yin Wah Fiona Chan
- Wendy Keung
- Camie W.Y. Chan
- Ronald A. Li
-
Affiliations: Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, Tianjin Key Laboratory of Ionic‑Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China, Faculty of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK, Intensive Care Department, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, SAR, P.R. China, School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK, Li Dak‑Sum Research Centre‑HKU‑Karolinska Institutet Collaboration on Regenerative Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China - Published online on: February 6, 2017 https://doi.org/10.3892/ijmm.2017.2877
- Pages: 519-526
-
Copyright : © Tse et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Ferrer MI: The sick sinus syndrome in atrial disease. JAMA. 206:645–646. 1968. View Article : Google Scholar : PubMed/NCBI | |
Kaplan BM, Langendorf R, Lev M and Pick A: Tachycardia-bradycardia syndrome (so-called 'sick sinus syndrome'). Pathology, mechanisms and treatment. Am J Cardiol. 31:497–508. 1973. View Article : Google Scholar : PubMed/NCBI | |
Rubenstein JJ, Schulman CL, Yurchak PM and DeSanctis RW: Clinical spectrum of the sick sinus syndrome. Circulation. 46:5–13. 1972. View Article : Google Scholar : PubMed/NCBI | |
Gomes JA, Kang PS, Matheson M, Gough WB Jr and El-Sherif N: Coexistence of sick sinus rhythm and atrial flutter-fibrillation. Circulation. 63:80–86. 1981. View Article : Google Scholar : PubMed/NCBI | |
Bayés de Luna AJ: Bloqueo a nivel auricular. Rev Esp Cardiol. 32:5–10. 1979. | |
Bayes de Luna A, Fort de Ribot R, Trilla E, Julia J, Garcia J, Sadurni J, Riba J and Sagues F: Electrocardiographic and vector-cardiographic study of interatrial conduction disturbances with left atrial retrograde activation. J Electrocardiol. 18:1–13. 1985. View Article : Google Scholar : PubMed/NCBI | |
Bayés de Luna A, Cladellas M, Oter R, Torner P, Guindo J, Martí V, Rivera I and Iturralde P: Interatrial conduction block and retrograde activation of the left atrium and paroxysmal supraventricular tachyarrhythmia. Eur Heart J. 9:1112–1118. 1988. View Article : Google Scholar : PubMed/NCBI | |
Bayés de Luna A, Oter MC and Guindo J: Interatrial conduction block with retrograde activation of the left atrium and paroxysmal supraventricular tachyarrhythmias: Influence of preventive anti-arrhythmic treatment. Int J Cardiol. 22:147–150. 1989. View Article : Google Scholar | |
Bayés de Luna A, Guindo J, Viñolas X, Martinez-Rubio A, Oter R and Bayés-Genís A: Third-degree inter-atrial block and supraventricular tachyarrhythmias. Europace. 1:43–46. 1999. View Article : Google Scholar | |
Bayés de Luna A, Platonov P, Cosio FG, Cygankiewicz I, Pastore C, Baranowski R, Bayés-Genis A, Guindo J, Viñolas X, Garcia-Niebla J, et al: Interatrial blocks. A separate entity from left atrial enlargement: A consensus report. J Electrocardiol. 45:445–451. 2012. View Article : Google Scholar : PubMed/NCBI | |
Conde D, Seoane L, Gysel M, Mitrione S, Bayés de Luna A and Baranchuk A: Bayés' syndrome:The association between interatrial block and supraventricular arrhythmias. Expert Rev Cardiovasc Ther. 13:541–550. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baranchuk A and Bayés de Luna A: The P-wave morphology: What does it tell us. Herzschrittmacherther Elektrophysiol. 26:192–199. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baranchuk A, de Luna AB and Breithardt G: To the Editor - The role of advanced interatrial block pattern as a predictor of atrial fibrillation. Heart Rhythm. 13:e872016. View Article : Google Scholar | |
Tse G: Both transmural dispersion of repolarization and transmural dispersion of refractoriness are poor predictors of arrhythmogenicity: A role for the index of Cardiac Electrophysiological Balance (QT/QRS). J Geriatr Cardiol. In press. | |
Zhao J, Liu T and Li G: Relationship between two arrhythmias: Sinus node dysfunction and atrial fibrillation. Arch Med Res. 45:351–355. 2014. View Article : Google Scholar : PubMed/NCBI | |
Choy L, Yeo JM, Tse V, Chan SP and Tse G: Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. Int J Cardiol Heart Vasc. 12:1–10. 2016.PubMed/NCBI | |
Tse G and Yan BP: Electrophysiological mechanisms of long and short QT syndromes: Insights from mouse models. IJC Heart & Vasculature. In press. | |
Tse G, Lai ET, Lee AP, Yan BP and Wong SH: Electrophysiological mechanisms of gastrointestinal arrhythmogenesis: Lessons from the heart. Front Physiol. 7:2302016.PubMed/NCBI | |
Tse G, Wong ST, Tse V, Lee YT, Lin HY and Yeo JM: Cardiac dynamics: alternans and arrhythmogenesis. J Arrhythm. In press. | |
Tse G: Novel conduction-repolarization indices for the stratification of arrhythmic risk. J Geriatr Cardiol. 13:811–812. 2016.PubMed/NCBI | |
Tse G: (Tpeak-Tend)/QRS and (Tpeak-Tend)/(QT x QRS): Novel markers for predicting arrhythmic risk in the Brugada syndrome. Europace. In press. | |
Tse G and Yan BP: Novel arrhythmic risk markers incorporating QRS dispersion: QRSd × (Tpeak - Tend)/QRS and QRSd × (Tpeak - Tend)/(QT × QRS). Ann Noninvasive Electrocardiol. Aug 18–2016.Epub ahead of print. View Article : Google Scholar | |
Wong J, Tan T, Chan C, Laxton V, Chan Y, Liu T, Wong J and Tse G: The role of connexins in wound healing and repair: novel therapeutic approaches. Front Physiol. In press. | |
Tse G and Yan BP: Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace. Oct 4–2016.Epub ahead of print. View Article : Google Scholar | |
Tse G, Wong ST, Tse V and Yeo JM: Variability in local action potential durations, dispersion of repolarization and wavelength restitution in aged wild type and Scn5a/- mouse hearts modelling human Brugada syndrome. J Geriatr Cardiol. In press. | |
Chen Z, Sun B, Tse G, Jiang J and Xu W: Reversibility of both sinus node dysfunction and reduced HCN4 mRNA expression level in an atrial tachycardia pacing model of tachycardia-bradycardia syndrome in rabbit hearts. Int J Clin Exp Pathol. 9:8526–8531. 2016. | |
Yeh YH, Burstein B, Qi XY, Sakabe M, Chartier D, Comtois P, Wang Z, Kuo CT and Nattel S: Funny current downregulation and sinus node dysfunction associated with atrial tachyarrhythmia: A molecular basis for tachycardia-bradycardia syndrome. Circulation. 119:1576–1585. 2009. View Article : Google Scholar : PubMed/NCBI | |
Monfredi O and Boyett MR: Sick sinus syndrome and atrial fibrillation in older persons - A view from the sinoatrial nodal myocyte. J Mol Cell Cardiol. 83:88–100. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lakatta EG, Vinogradova T, Lyashkov A, Sirenko S, Zhu W, Ruknudin A and Maltsev VA: The integration of spontaneous intracellular Ca2+ cycling and surface membrane ion channel activation entrains normal automaticity in cells of the heart's pacemaker. Ann N Y Acad Sci. 1080:178–206. 2006. View Article : Google Scholar : PubMed/NCBI | |
Baruscotti M, Bucchi A and Difrancesco D: Physiology and pharmacology of the cardiac pacemaker ('funny') current. Pharmacol Ther. 107:59–79. 2005. View Article : Google Scholar : PubMed/NCBI | |
DiFrancesco D: Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol. 55:455–472. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ludwig A, Zong X, Jeglitsch M, Hofmann F and Biel M: A family of hyperpolarization-activated mammalian cation channels. Nature. 393:587–591. 1998. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, Robinson RB, Dixon JE, McKinnon D and Cohen IS: Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res. 85:e1–e6. 1999. View Article : Google Scholar : PubMed/NCBI | |
Moroni A, Gorza L, Beltrame M, Gravante B, Vaccari T, Bianchi ME, Altomare C, Longhi R, Heurteaux C, Vitadello M, et al: Hyperpolarization-activated cyclic nucleotide-gated channel 1 is a molecular determinant of the cardiac pacemaker current I(f). J Biol Chem. 276:29233–29241. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yaniv Y, Lakatta EG and Maltsev VA: From two competing oscillators to one coupled-clock pacemaker cell system. Front Physiol. 6:282015. View Article : Google Scholar : PubMed/NCBI | |
Dobrzynski H, Boyett MR and Anderson RH: New insights into pacemaker activity: Promoting understanding of sick sinus syndrome. Circulation. 115:1921–1932. 2007. View Article : Google Scholar : PubMed/NCBI | |
Boyett MR, Honjo H and Kodama I: The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 47:658–687. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gellens ME, George ALJ Jr, Chen LQ, Chahine M, Horn R, Barchi RL and Kallen RG: Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci USA. 89:554–558. 1992. View Article : Google Scholar : PubMed/NCBI | |
Stühmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H and Numa S: Structural parts involved in activation and inactivation of the sodium channel. Nature. 339:597–603. 1989. View Article : Google Scholar : PubMed/NCBI | |
Kontis KJ, Rounaghi A and Goldin AL: Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol. 110:391–401. 1997. View Article : Google Scholar : PubMed/NCBI | |
Horn R, Patlak J and Stevens CF: Sodium channels need not open before they inactivate. Nature. 291:426–427. 1981. View Article : Google Scholar : PubMed/NCBI | |
West JW, Patton DE, Scheuer T, Wang Y, Goldin AL and Catterall WA: A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci USA. 89:10910–10914. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kellenberger S, Scheuer T and Catterall WA: Movement of the Na+ channel inactivation gate during inactivation. J Biol Chem. 271:30971–30979. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kellenberger S, West JW, Catterall WA and Scheuer T: Molecular analysis of potential hinge residues in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol. 109:607–617. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kellenberger S, West JW, Scheuer T and Catterall WA: Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol. 109:589–605. 1997. View Article : Google Scholar : PubMed/NCBI | |
Smith MR and Goldin AL: Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J. 73:1885–1895. 1997. View Article : Google Scholar : PubMed/NCBI | |
Shryock JC, Song Y, Rajamani S, Antzelevitch C and Belardinelli L: The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res. 99:600–611. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balser JR, Nuss HB, Chiamvimonvat N, Pérez-García MT, Marban E and Tomaselli GF: External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol. 494:431–442. 1996. View Article : Google Scholar : PubMed/NCBI | |
Vilin YY, Makita N, George AL Jr and Ruben PC: Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys J. 77:1384–1393. 1999. View Article : Google Scholar : PubMed/NCBI | |
John RM and Kumar S: Sinus Node and Atrial Arrhythmias. Circulation. 133:1892–1900. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koval M, Isakson BE and Gourdie RG: Connexins, pannexins and innexins: Protein cousins with overlapping functions. FEBS Lett. 588:11852014. View Article : Google Scholar : PubMed/NCBI | |
Veeraraghavan R, Gourdie RG and Poelzing S: Mechanisms of cardiac conduction: A history of revisions. Am J Physiol Heart Circ Physiol. 306:H619–H627. 2014. View Article : Google Scholar : PubMed/NCBI | |
Veeraraghavan R, Poelzing S and Gourdie RG: Intercellular electrical communication in the heart: A new, active role for the intercalated disk. Cell Commun Adhes. 21:161–167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davis LM, Kanter HL, Beyer EC and Saffitz JE: Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol. 24:1124–1132. 1994. View Article : Google Scholar : PubMed/NCBI | |
Gourdie RG, Green CR, Severs NJ, Anderson RH and Thompson RP: Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. Circ Res. 72:278–289. 1993. View Article : Google Scholar : PubMed/NCBI | |
Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P and Thompson RP: The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci. 105:985–991. 1993.PubMed/NCBI | |
Beyer EC, Paul DL and Goodenough DA: Connexin43: A protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 105:2621–2629. 1987. View Article : Google Scholar : PubMed/NCBI | |
Davis LM, Rodefeld ME, Green K, Beyer EC and Saffitz JE: Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol. 6:813–822. 1995. View Article : Google Scholar : PubMed/NCBI | |
Saffitz JE, Green KG and Schuessler RB: Structural determinants of slow conduction in the canine sinus node. J Cardiovasc Electrophysiol. 8:738–744. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wilders R, Verheijck EE, Kumar R, Goolsby WN, van Ginneken AC, Joyner RW and Jongsma HJ: Model clamp and its application to synchronization of rabbit sinoatrial node cells. Am J Physiol. 271:H2168–H2182. 1996.PubMed/NCBI | |
Bukauskas FF and Verselis VK: Gap junction channel gating. Biochim Biophys Acta. 1662:42–60. 2004. View Article : Google Scholar : PubMed/NCBI | |
Musil LS and Goodenough DA: Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol. 115:1357–1374. 1991. View Article : Google Scholar : PubMed/NCBI | |
Sáez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC and Hertzberg EL: Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol. 29:2131–2145. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kwak BR, Hermans MM, De Jonge HR, Lohmann SM, Jongsma HJ and Chanson M: Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell. 6:1707–1719. 1995. View Article : Google Scholar : PubMed/NCBI | |
De Mello WC: Effect of intracellular injection of calcium and strontium on cell communication in heart. J Physiol. 250:231–245. 1975. View Article : Google Scholar : PubMed/NCBI | |
Dahl G and Isenberg G: Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol. 53:63–75. 1980. View Article : Google Scholar : PubMed/NCBI | |
Burt JM: Block of intercellular communication: Interaction of intracellular H+ and Ca2+. Am J Physiol. 253:C607–C612. 1987.PubMed/NCBI | |
Maurer P and Weingart R: Cell pairs isolated from adult guinea pig and rat hearts: Effects of [Ca2+]i on nexal membrane resistance. Pflugers Arch. 409:394–402. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hermans MM, Kortekaas P, Jongsma HJ and Rook MB: pH sensitivity of the cardiac gap junction proteins, connexin 45 and 43. Pflugers Arch. 431:138–140. 1995. View Article : Google Scholar : PubMed/NCBI | |
Morley GE, Taffet SM and Delmar M: Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J. 70:1294–1302. 1996. View Article : Google Scholar : PubMed/NCBI | |
Meyer R, Malewicz B, Baumann WJ and Johnson RG: Increased gap junction assembly between cultured cells upon cholesterol supplementation. J Cell Sci. 96:231–238. 1990.PubMed/NCBI | |
Meyer RA, Lampe PD, Malewicz B, Baumann WJ and Johnson RG: Enhanced gap junction formation with LDL and apolipoprotein B. Exp Cell Res. 196:72–81. 1991. View Article : Google Scholar : PubMed/NCBI | |
Massey KD, Minnich BN and Burt JM: Arachidonic acid and lipoxygenase metabolites uncouple neonatal rat cardiac myocyte pairs. Am J Physiol. 263:C494–C501. 1992.PubMed/NCBI | |
Schubert AL, Schubert W, Spray DC and Lisanti MP: Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry. 41:5754–5764. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yabek SM and Jarmakani JM: Sinus node dysfunction in children, adolescents, and young adults. Pediatrics. 61:593–598. 1978.PubMed/NCBI | |
Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O and Isbrandt D: Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 111:1537–1545. 2003. View Article : Google Scholar : PubMed/NCBI | |
Duhme N, Schweizer PA, Thomas D, Becker R, Schröter J, Barends TR, Schlichting I, Draguhn A, Bruehl C, Katus HA, et al: Altered HCN4 channel C-linker interaction is associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. Eur Heart J. 34:2768–2775. 2013. View Article : Google Scholar | |
DiFrancesco D: HCN4, Sinus Bradycardia and Atrial Fibrillation. Arrhythm Electrophysiol Rev. 4:9–13. 2015. View Article : Google Scholar | |
Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, et al: HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol. 64:745–756. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schweizer PA, Schröter J, Greiner S, Haas J, Yampolsky P, Mereles D, Buss SJ, Seyler C, Bruehl C, Draguhn A, et al: The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol. 64:757–767. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Ding WG, Makiyama T, Miyamoto A, Matsumoto Y, Kimura H, Tarutani Y, Zhao J, Wu J, Zang WJ, et al: A novel HCN4 mutation, G1097W, is associated with atrioventricular block. Circ J. 78:938–942. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasunami M, et al: Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem. 279:27194–27198. 2004. View Article : Google Scholar : PubMed/NCBI | |
Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G, Gnecchi-Rusconi T, Montano N, Casali KR, Micheloni S, Barbuti A, et al: Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc Natl Acad Sci USA. 108:1705–1710. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mesirca P, Alig J, Torrente AG, Müller JC, Marger L, Rollin A, Marquilly C, Vincent A, Dubel S, Bidaud I, et al: Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation. Nat Commun. 5:4664. 2014. View Article : Google Scholar : PubMed/NCBI | |
Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y, Ohno S, Nishio Y, Tsuji K, Itoh H, et al: A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 52:1326–1334. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, van Langen IM, Tan-Sindhunata G, Bink-Boelkens MT, van Der Hout AH, et al: A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res. 85:1206–1213. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, et al: Common variants at SCN5A–SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 45:1044–1049. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bezzina CR and Remme CA: Dilated cardiomyopathy due to sodium channel dysfunction: What is the connection. Circ Arrhythm Electrophysiol. 1:80–82. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bezzina CR, Rook MB, Groenewegen WA, Herfst LJ, van der Wal AC, Lam J, Jongsma HJ, Wilde AA and Mannens MM: Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res. 92:159–168. 2003. View Article : Google Scholar : PubMed/NCBI | |
Remme CA, Wilde AA and Bezzina CR: Cardiac sodium channel overlap syndromes: Different faces of SCN5A mutations. Trends Cardiovasc Med. 18:78–87. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, van den Berg MP, Wilde AA and Balser JR: A sodium-channel mutation causes isolated cardiac conduction disease. Nature. 409:1043–1047. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chang CC, Acharfi S, Wu MH, Chiang FT, Wang JK, Sung TC and Chahine M: A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovasc Res. 64:268–278. 2004. View Article : Google Scholar : PubMed/NCBI | |
Letsas KP, Korantzopoulos P, Efremidis M, Weber R, Lioni L, Bakosis G, Vassilikos VP, Deftereos S, Sideris A and Arentz T: Sinus node disease in subjects with type 1 ECG pattern of Brugada syndrome. J Cardiol. 61:227–231. 2013. View Article : Google Scholar : PubMed/NCBI | |
Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A, Nattel S, Hohnloser SH, et al: Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 6:1802–1809. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bennett V and Healy J: Organizing the fluid membrane bilayer: Diseases linked to spectrin and ankyrin. Trends Mol Med. 14:28–36. 2008. View Article : Google Scholar | |
Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR, Koval O, Marionneau C, Chen B, Wu Y, Demolombe S, et al: Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci USA. 105:15617–15622. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mohler PJ, Splawski I, Napolitano C, Bottelli G, Sharpe L, Timothy K, Priori SG, Keating MT and Bennett V: A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci USA. 101:9137–9142. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogné K, Kyndt F, Ali ME, et al: Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 421:634–639. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mohler PJ, Le Scouarnec S, Denjoy I, et al: Defining the cellular phenotype of 'ankyrin-B syndrome' variants: Human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation. 115:432–441. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J and Nargeot J: Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA. 100:5543–5548. 2003. View Article : Google Scholar : PubMed/NCBI | |
Trebak M, Zhang W, Ruhle B, Henkel MM, González-Cobos JC, Motiani RK, Stolwijk JA, Newton RL and Zhang X: What role for store-operated Ca2+ entry in muscle. Microcirculation. 20:330–336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ju YK, Lee BH, Trajanovska S, Hao G, Allen DG, Lei M and Cannell MB: The involvement of TRPC3 channels in sinoatrial arrhythmias. Front Physiol. 6:862015. View Article : Google Scholar : PubMed/NCBI | |
Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, Gao Z, He BJ, Luczak ED, Joiner ML, et al: Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest. 121:3277–3288. 2011. View Article : Google Scholar : PubMed/NCBI | |
Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O'Donnell SE, Aykin-Burns N, et al: A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 133:462–474. 2008. View Article : Google Scholar : PubMed/NCBI | |
Luu M, Stevenson WG, Stevenson LW, Baron K and Walden J: Diverse mechanisms of unexpected cardiac arrest in advanced heart failure. Circulation. 80:1675–1680. 1989. View Article : Google Scholar : PubMed/NCBI | |
Stevenson WG, Stevenson LW, Middlekauff HR and Saxon LA: Sudden death prevention in patients with advanced ventricular dysfunction. Circulation. 88:2953–2961. 1993. View Article : Google Scholar : PubMed/NCBI | |
Faggioni M, van der Werf C and Knollmann BC: Sinus node dysfunction in catecholaminergic polymorphic ventricular tachycardia: Risk factor and potential therapeutic target. Trends Cardiovasc Med. 24:273–278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sumitomo N, Sakurada H, Taniguchi K, et al: Association of atrial arrhythmia and sinus node dysfunction in patients with catecholaminergic polymorphic ventricular tachycardia. Circ J. 71:1606–1609. 2007. View Article : Google Scholar : PubMed/NCBI | |
Faggioni M, Savio-Galimberti E, Venkataraman R, Hwang HS, Kannankeril PJ, Darbar D and Knollmann BC: Suppression of spontaneous ca elevations prevents atrial fibrillation in calsequestrin 2-null hearts. Circ Arrhythm Electrophysiol. 7:313–320. 2014. View Article : Google Scholar : PubMed/NCBI | |
Glukhov AV, Kalyanasundaram A, Lou Q, Hage LT, Hansen BJ, Belevych AE, Mohler PJ, Knollmann BC, Periasamy M, Györke S, et al: Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. Eur Heart J. 36:686–697. 2015. View Article : Google Scholar | |
Jongsma HJ: Diversity of gap junctional proteins: Does it play a role in cardiac excitation. J Cardiovasc Electrophysiol. 11:228–230. 2000. View Article : Google Scholar : PubMed/NCBI | |
Eckardt D, Theis M, Degen J, Ott T, van Rijen HV, Kirchhoff S, Kim JS, de Bakker JM and Willecke K: Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion. J Mol Cell Cardiol. 36:101–110. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bagwe S, Berenfeld O, Vaidya D, Morley GE and Jalife J: Altered right atrial excitation and propagation in connexin40 knockout mice. Circulation. 112:2245–2253. 2005. View Article : Google Scholar : PubMed/NCBI | |
Verheule S, van Batenburg CA, Coenjaerts FE, Kirchhoff S, Willecke K and Jongsma HJ: Cardiac conduction abnormalities in mice lacking the gap junction protein connexin40. J Cardiovasc Electrophysiol. 10:1380–1389. 1999. View Article : Google Scholar : PubMed/NCBI | |
VanderBrink BA, Sellitto C, Saba S, Link MS, Zhu W, Homoud MK, Estes NA III, Paul DL and Wang PJ: Connexin40-deficient mice exhibit atrioventricular nodal and infra-Hisian conduction abnormalities. J Cardiovasc Electrophysiol. 11:1270–1276. 2000. View Article : Google Scholar : PubMed/NCBI | |
Thery C, Gosselin B, Lekieffre J and Warembourg H: Pathology of sinoatrial node. Correlations with electrocardiographic findings in 111 patients. Am Heart J. 93:735–740. 1977. View Article : Google Scholar : PubMed/NCBI | |
Ellinor PT, Lunetta KL, Albert CM, Glazer L, Ritchie MD, Smith AV, Arking DE, Müller-Nurasyid M, Krijthe BP, Lubitz SA, et al: Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 44:670–675. 2012. View Article : Google Scholar : PubMed/NCBI | |
Funaya H, Kitakaze M, Node K, Minamino T, Komamura K and Hori M: Plasma adenosine levels increase in patients with chronic heart failure. Circulation. 95:1363–1365. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lou Q, Hansen BJ, Fedorenko O, Csepe TA, Kalyanasundaram A, Li N, Hage LT, Glukhov AV, Billman GE, Weiss R, et al: Upregulation of adenosine A1 receptors facilitates sinoatrial node dysfunction in chronic canine heart failure by exacerbating nodal conduction abnormalities revealed by novel dual-sided intramural optical mapping. Circulation. 130:315–324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li G, Liu E, Liu T, Wang J, Dai J, Xu G, Korantzopoulos P and Yang W: Atrial electrical remodeling in a canine model of sinus node dysfunction. Int J Cardiol. 146:32–36. 2011. View Article : Google Scholar | |
Herrmann S, Fabritz L, Layh B, Kirchhof P and Ludwig A: Insights into sick sinus syndrome from an inducible mouse model. Cardiovasc Res. 90:38–48. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tse G and Yeo JM: Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. Int J Cardiol Heart Vasc. 9:75–82. 2015. | |
Pezhouman A, Cao H, Lee HH, Belardinelli L, Weiss JN and Karagueuzian HS: Abstract 16247: Oxidative Stress Initiates Atrial Fibrillation in Fibrotic Hearts by Early Afterdepolarization-Mediated Triggered Activity. The Key Role of Late INa. Circulation. 130:A162472014. | |
Morita N, Mandel WJ, Kobayashi Y and Karagueuzian HS: Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J Arrhythm. 30:389–394. 2014. View Article : Google Scholar | |
Tse G, Tse V and Yeo JM: Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Rep. 4:313–324. 2016.PubMed/NCBI | |
Tse G, Tse V, Yeo JM and Sun B: Atrial anti-arrhythmic effects of heptanol in Langendorff-perfused mouse hearts. PLoS One. 11:e01488582016. View Article : Google Scholar : PubMed/NCBI | |
Tse G, Wong ST, Tse V and Yeo JM: Restitution analysis of alternans using dynamic pacing and its comparison with S1S2 restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts. Biomed Rep. 4:673–680. 2016.PubMed/NCBI | |
Tse G, Sun B, Wong ST, Tse V and Yeo JM: Ventricular anti-arrhythmic effects of hypercalcaemia treatment in hyperkalaemic, Langendorff-perfused mouse hearts. Biomed Rep. 5:301–310. 2016.PubMed/NCBI | |
Tse G, Yeo JM, Tse V, Kwan J and Sun B: Gap junction inhibition by heptanol increases ventricular arrhythmogenicity by reducing conduction velocity without affecting repolarization properties or myocardial refractoriness in Langendorff-perfused mouse hearts. Mol Med Rep. 14:4069–4074. 2016.PubMed/NCBI | |
Tse G, Lai ET, Tse V and Yeo JM: Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J Diabetes Res. 2016:28487592016. View Article : Google Scholar : PubMed/NCBI | |
Tse G, Yeo JM, Chan YW, Lai ET and Yan BP: What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front Physiol. 7:3082016. View Article : Google Scholar : PubMed/NCBI | |
Tse G, Yan BP, Chan YW, Tian XY and Huang Y: Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: The link with cardiac arrhythmogenesis. Front Physiol. 7:3132016. View Article : Google Scholar : PubMed/NCBI | |
Tse G, Lai ET, Yeo JM and Yan BP: Electrophysiological mechanisms of Bayés syndrome: Insights from clinical and mouse studies. Front Physiol. 7:1882016. | |
Li RA: Gene- and cell-based bio-artificial pacemaker: What basic and translational lessons have we learned. Gene Ther. 19:588–595. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marbán E, Tomaselli GF and Li RA: Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: Insights into the development of cell-based pacemakers. Circulation. 111:11–20. 2005. View Article : Google Scholar | |
Nattel S: Inward rectifier-funny current balance and spontaneous automaticity: Cautionary notes for biologic pacemaker development. Heart Rhythm. 5:1318–1319. 2008. View Article : Google Scholar : PubMed/NCBI | |
Miake J, Marbán E and Nuss HB: Biological pacemaker created by gene transfer. Nature. 419:132–133. 2002. View Article : Google Scholar : PubMed/NCBI | |
Azene EM, Xue T, Marbán E, Tomaselli GF and Li RA: Non-equilibrium behavior of HCN channels: Insights into the role of HCN channels in native and engineered pacemakers. Cardiovasc Res. 67:263–273. 2005. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Barbuti A, Protas L, Santoro B, Cohen IS and Robinson RB: HCN2 overexpression in newborn and adult ventricular myocytes: Distinct effects on gating and excitability. Circ Res. 89:E8–E14. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xue T, Siu CW, Lieu DK, Lau CP, Tse HF and Li RA: Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels. Circulation. 115:1839–1850. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kass-Eisler A, Falck-Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA, Cipriani L and Leinwand LA: Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci USA. 90:11498–11502. 1993. View Article : Google Scholar : PubMed/NCBI | |
Mühlhauser J, Jones M, Yamada I, Cirielli C, Lemarchand P, Gloe TR, Bewig B, Signoretti S, Crystal RG and Capogrossi MC: Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther. 3:145–153. 1996.PubMed/NCBI | |
Chan YC, Siu CW, Lau YM, Lau CP, Li RA and Tse HF: Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity. J Cardiovasc Electrophysiol. 20:1048–1054. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lieu DK, Chan YC, Lau CP, Tse HF, Siu CW and Li RA: Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers. Heart Rhythm. 5:1310–1317. 2008. View Article : Google Scholar : PubMed/NCBI | |
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Ohe T, Kurokawa J, Furukawa T, Takano M, Nagase S, Morita H, et al: Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker. PLoS One. 10:e01381932015. View Article : Google Scholar : PubMed/NCBI | |
Kong CW, Akar FG and Li RA: Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: Insights from experimental models. Thromb Haemost. 104:30–38. 2010. View Article : Google Scholar : PubMed/NCBI | |
Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Keung W, Chow H, et al: A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev. 23:1704–1716. 2014. View Article : Google Scholar : PubMed/NCBI | |
Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo P Jr, Lorell BH, Potapova IA, Lu Z, Rosen AB, Mathias RT, Brink PR, et al: Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation. 116:706–713. 2007. View Article : Google Scholar : PubMed/NCBI | |
Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L, Janse MJ, Brink PR, Cohen IS, Robinson RB, et al: Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation. 109:506–512. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cho HC, Kashiwakura Y and Marbán E: Creation of a biological pacemaker by cell fusion. Circ Res. 100:1112–1115. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J and Gepstein L: Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 22:1282–1289. 2004. View Article : Google Scholar : PubMed/NCBI | |
Verkerk AO and Wilders R: Hyperpolarization-activated current, If, in mathematical models of rabbit sinoatrial node pacemaker cells. BioMed Res Int. 2013:8724542013. View Article : Google Scholar : PubMed/NCBI | |
Tse G: Mechanisms of cardiac arrhythmias. J Arrhythm. 32:75–81. 2016. View Article : Google Scholar : PubMed/NCBI |