Senescence of mesenchymal stem cells (Review)
- Authors:
- Yi Li
- Qiong Wu
- Yujia Wang
- Li Li
- Hong Bu
- Ji Bao
-
Affiliations: Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: March 9, 2017 https://doi.org/10.3892/ijmm.2017.2912
- Pages: 775-782
This article is mentioned in:
Abstract
Payushina O, Domaratskaya E and Starostin V: Mesenchymal stem cells: Sources, phenotype, and differentiation potential. Biol Bull. 33:2–18. 2006. View Article : Google Scholar | |
Musina RA, Bekchanova ES and Sukhikh GT: Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med. 139:504–509. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E and Fagioli F: Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem. 97:744–754. 2006. View Article : Google Scholar | |
Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L, et al: Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2–dependent regulatory dendritic cell population. Blood. 113:46–57. 2009. View Article : Google Scholar | |
Trivedi P and Hematti P: Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol. 36:350–359. 2008.PubMed/NCBI | |
Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, Zummo G, Farina F and La Rocca G: New emerging potentials for human Wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev. 19:423–438. 2010. View Article : Google Scholar | |
Francese R and Fiorina P: Immunological and regenerative properties of cord blood stem cells. Clin Immunol. 136:309–322. 2010. View Article : Google Scholar : PubMed/NCBI | |
Patel DM, Shah J and Srivastava AS: Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int. 2013:4962182013. View Article : Google Scholar : PubMed/NCBI | |
Rubin H: Promise and problems in relating cellular senescence in vitro to aging in vivo. Arch Gerontol Geriatr. 34:275–286. 2002. View Article : Google Scholar | |
Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R and Prockop DJ: Propagation and senescence of human marrow stromal cells in culture: A simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol. 107:275–281. 1999. View Article : Google Scholar : PubMed/NCBI | |
Campisi J and d'Adda di Fagagna F: Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol. 8:729–740. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stenderup K, Justesen J, Clausen C and Kassem M: Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 33:919–926. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS and Glowacki J: Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 7:335–343. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singh M and Piekorz RP: Senescence-associated lysosomal α-L-fucosidase (SA-α-Fuc): A sensitive and more robust biomarker for cellular senescence beyond SA-β-Gal. Cell Cycle. 12:19962013. View Article : Google Scholar | |
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Park YS, Kim HS, Kim HY, Jin YM, Jung SC, Ryu KH and Jo I: Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: Role for CCN1 in replicative senescence-associated increase in osteogenic differentiation. J Anat. 225:510–518. 2014. View Article : Google Scholar : PubMed/NCBI | |
Simmons PJ and Torok-Storb B: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 78:55–62. 1991.PubMed/NCBI | |
Jung EM, Kwon O, Kwon KS, Cho YS, Rhee SK, Min JK and Oh DB: Evidences for correlation between the reduced VCAM-1 expression and hyaluronan synthesis during cellular senescence of human mesenchymal stem cells. Biochem Biophys Res Commun. 404:463–469. 2011. View Article : Google Scholar | |
Lv FJ, Tuan RS, Cheung KM and Leung VY: Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells. 32:1408–1419. 2014. View Article : Google Scholar : PubMed/NCBI | |
Laschober GT, Brunauer R, Jamnig A, Fehrer C, Greiderer B and Lepperdinger G: Leptin receptor/CD295 is upregulated on primary human mesenchymal stem cells of advancing biological age and distinctly marks the subpopulation of dying cells. Exp Gerontol. 44:57–62. 2009. View Article : Google Scholar | |
Astudillo P, Ríos S, Pastenes L, Pino AM and Rodríguez JP: Increased adipogenesis of osteoporotic humanmesenchymal stem cells (MSCs) characterizes by impaired leptin action. J Cell Biochem. 103:1054–1065. 2008. View Article : Google Scholar | |
Atashi F, Modarressi A and Pepper MS: The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 24:1150–1163. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Qian J, Xie X, Lin L, Zou Y, Fu M, Huang Z, Zhang G, Su Y and Ge J: High density lipoprotein protects mesenchymal stem cells from oxidative stress-induced apoptosis via activation of the PI3K/Akt pathway and suppression of reactive oxygen species. Int J Mol Sci. 13:17104–17120. 2012. View Article : Google Scholar | |
Jiang Y, Mishima H, Sakai S, Liu YK, Ohyabu Y and Uemura T: Gene expression analysis of major lineage-defining factors in human bone marrow cells: effect of aging, gender, and age-related disorders. J Orthop Res. 26:910–917. 2008. View Article : Google Scholar : PubMed/NCBI | |
Komori T: Signaling networks in RUNX2-dependent bone development. J Cell Biochem. 112:750–755. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tu B, Peng ZX, Fan QM, Du L, Yan W and Tang TT: Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Exp Cell Res. 320:164–173. 2014. View Article : Google Scholar | |
Xu C, Wang J, Zhu T, Shen Y, Tang X, Fang L and Xu Y: Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther. 11:247–254. 2016. View Article : Google Scholar | |
Isidori AM, Strollo F, Morè M, Caprio M, Aversa A, Moretti C, Frajese G, Riondino G and Fabbri A: Leptin and aging: Correlation with endocrine changes in male and female healthy adult populations of different body weights. J Clin Endocrinol Metab. 85:1954–1962. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lee HM, Joo BS, Lee CH, Kim HY, Ock JH and Lee YS: Effect of glucagon-like peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes. J Menopausal Med. 21:93–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stringer B, Waddington R, Houghton A, Stone M, Russell G and Foster G: Serum from postmenopausal women directs differentiation of human clonal osteoprogenitor cells from an osteoblastic toward an adipocytic phenotype. Calcif Tissue Int. 80:233–243. 2007. View Article : Google Scholar : PubMed/NCBI | |
Harman D: Aging: a theory based on free radical and radiation chemistry. J Gerontol. 11:298–300. 1956. View Article : Google Scholar : PubMed/NCBI | |
Poyton RO, Ball KA and Castello PR: Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 20:332–340. 2009. View Article : Google Scholar : PubMed/NCBI | |
Balaban RS, Nemoto S and Finkel T: Mitochondria, oxidants, and aging. Cell. 120:483–495. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bedard K and Krause K-H: The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boutten A, Goven D, Boczkowski J and Bonay M: Oxidative stress targets in pulmonary emphysema: Focus on the Nrf2 pathway. Expert Opin Ther Targets. 14:329–346. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jeong SG and Cho GW: Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem Biophys Res Commun. 460:971–976. 2015. View Article : Google Scholar : PubMed/NCBI | |
Benameur L, Charif N, Li Y, Stoltz JF and de Isla N: Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells. Biomed Mater Eng. 25(Suppl 1): 41–46. 2015. | |
Stolzing A, Jones E, McGonagle D and Scutt A: Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 129:163–173. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tsai WB, Chung YM, Takahashi Y, Xu Z and Hu MC: Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat Cell Biol. 10:460–467. 2008. View Article : Google Scholar : PubMed/NCBI | |
Milani P, Ambrosi G, Gammoh O, Blandini F and Cereda C: SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev. 2013:8367602013. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Cui J, Liu X, Lv B, Liu X, Xie Z and Yu B: Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Res Ther. 6:1952015. View Article : Google Scholar : PubMed/NCBI | |
Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM and Stefani M: Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 416:507–511. 2002. View Article : Google Scholar : PubMed/NCBI | |
Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, et al: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5:e1102007. View Article : Google Scholar : PubMed/NCBI | |
Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI | |
Hwang ES: Senescence suppressors: Their practical importance in replicative lifespan extension in stem cells. Cell Mol Life Sci. 71:4207–4219. 2014. View Article : Google Scholar : PubMed/NCBI | |
Harley CB, Futcher AB and Greider CW: Telomeres shorten during ageing of human fibroblasts. Nature. 345:458–460. 1990. View Article : Google Scholar : PubMed/NCBI | |
Guillot PV, Gotherstrom C, Chan J, Kurata H and Fisk NM: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 25:646–654. 2007. View Article : Google Scholar | |
Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A and Nikbin B: Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 7:142006. View Article : Google Scholar : PubMed/NCBI | |
Parsch D, Fellenberg J, Brümmendorf TH, Eschlbeck AM and Richter W: Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J Mol Med (Berl). 82:49–55. 2004. View Article : Google Scholar | |
Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ and Bellantuono I: Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 22:675–682. 2004. View Article : Google Scholar : PubMed/NCBI | |
Raz V, Vermolen BJ, Garini Y, Onderwater JJ, Mommaas-Kienhuis MA, Koster AJ, Young IT, Tanke H and Dirks RW: The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci. 121:4018–4028. 2008. View Article : Google Scholar : PubMed/NCBI | |
Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA, et al: Telomerase maintains telomere structure in normal human cells. Cell. 114:241–253. 2003. View Article : Google Scholar : PubMed/NCBI | |
Graakjaer J, Christensen R, Kolvraa S and Serakinci N: Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation. BMC Mol Biol. 8:492007. View Article : Google Scholar : PubMed/NCBI | |
Ryu E, Hong S, Kang J, Woo J, Park J, Lee J and Seo JS: Identification of senescence-associated genes in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 371:431–436. 2008. View Article : Google Scholar : PubMed/NCBI | |
Serakinci N, Christensen R, Graakjaer J, Cairney CJ, Keith WN, Alsner J, Saretzki G and Kolvraa S: Ectopically hTERT expressing adult human mesenchymal stem cells are less radio-sensitive than their telomerase negative counterpart. Exp Cell Res. 313:1056–1067. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sawada R, Ito T and Tsuchiya T: Changes in expression of genes related to cell proliferation in human mesenchymal stem cells during in vitro culture in comparison with cancer cells. J Artif Organs. 9:179–184. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li H, Xu D, Li J, Berndt MC and Liu JP: Transforming growth factor β suppresses human telomerase reverse transcriptase (hTERT) by Smad3 interactions with c-Myc and the hTERT gene. J Biol Chem. 281:25588–25600. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S and Wright WE: Extension of life-span by introduction of telomerase into normal human cells. Science. 279:349–352. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sengupta N and Seto E: Regulation of histone deacetylase activities. J Cell Biochem. 93:57–67. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Liu C, Xie Z, Song P, Zhao RC, Guo L, Liu Z and Wu Y: Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One. 6:e205262011. View Article : Google Scholar : PubMed/NCBI | |
Jung JW, Lee S, Seo MS, Park SB, Kurtz A, Kang SK and Kang KS: Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci. 67:1165–1176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Jung JW, Park SB, Roh K, Lee SY, Kim JH, Kang SK and Kang KS: Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multi-potent stem cell aging. Cell Mol Life Sci. 68:325–336. 2011. View Article : Google Scholar | |
Yuan H-F, Zhai C, Yan X-L, Zhao DD, Wang JX, Zeng Q, Chen L, Nan X, He LJ, Li ST, et al: SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl). 90:389–400. 2012. View Article : Google Scholar | |
Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33(Suppl): 245–254. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cervoni N and Szyf M: Demethylase activity is directed by histone acetylation. J Biol Chem. 276:40778–40787. 2001. View Article : Google Scholar : PubMed/NCBI | |
So AY, Jung JW, Lee S, Kim HS and Kang KS: DNA methyl-transferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One. 6:e195032011. View Article : Google Scholar | |
Rayess H, Wang MB and Srivatsan ES: Cellular senescence and tumor suppressor gene p16. Int J Cancer. 130:1715–1725. 2012. View Article : Google Scholar : | |
Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, Furu M, Kohno Y, Ito K, Fujibayashi S, Neo M, et al: Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells. 25:2371–2382. 2007. View Article : Google Scholar : PubMed/NCBI | |
Grosschedl R, Giese K and Pagel J: HMG domain proteins: Architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10:94–100. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yu KR, Park SB, Jung JW, Seo MS, Hong IS, Kim HS, Seo Y, Kang TW, Lee JY, Kurtz A, et al: HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res (Amst). 10:156–165. 2013. View Article : Google Scholar | |
Li Y, Nichols MA, Shay JW and Xiong Y: Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 54:6078–6082. 1994.PubMed/NCBI | |
Lin SP, Chiu FY, Wang Y, Yen ML, Kao SY and Hung SC: RB maintains quiescence and prevents premature senescence through upregulation of DNMT1 in mesenchymal stromal cells. Stem Cell Rep. 3:975–986. 2014. View Article : Google Scholar | |
Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A and Galderisi U: Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci. 70:1637–1651. 2013. View Article : Google Scholar : PubMed/NCBI | |
Galderisi U, Cipollaro M and Giordano A: The retinoblastoma gene is involved in multiple aspects of stem cell biology. Oncogene. 25:5250–5256. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hutchison CJ and Worman HJ: A-type lamins: Guardians of the soma? Nat Cell Biol. 6:1062–1067. 2004. View Article : Google Scholar : PubMed/NCBI | |
Corrigan DP, Kuszczak D, Rusinol AE, Thewke DP, Hrycyna CA, Michaelis S and Sinensky MS: Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem J. 387:129–138. 2005. View Article : Google Scholar : | |
Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, et al: Genomic instability in laminopathy-based premature aging. Nat Med. 11:780–785. 2005. View Article : Google Scholar : PubMed/NCBI | |
Scaffidi P and Misteli T: Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol. 10:452–459. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu KR and Kang KS: Aging-related genes in mesenchymal stem cells: A mini-review. Gerontology. 59:557–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ksiazek K: A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res. 12:105–116. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rodier F and Campisi J: Four faces of cellular senescence. J Cell Biol. 192:547–556. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, et al: Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 26:279–289. 2008. View Article : Google Scholar | |
Trento C and Dazzi F: Mesenchymal stem cells and innate tolerance: Biology and clinical applications. Swiss Med Wkly. 140:w131212010.PubMed/NCBI | |
Barbagallo I, Vanella A, Peterson SJ, Kim DH, Tibullo D, Giallongo C, Vanella L, Parrinello N, Palumbo GA, Di Raimondo F, et al: Overexpression of heme oxygenase-1 increases human osteoblast stem cell differentiation. J Bone Miner Metab. 28:276–288. 2010. View Article : Google Scholar | |
Ito T, Sawada R, Fujiwara Y, Seyama Y and Tsuchiya T: FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun. 359:108–114. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Niu J, Li X, Wang X, Guo Z and Zhang F: TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. BMC Dev Biol. 14:212014. View Article : Google Scholar | |
Gurung S, Werkmeister JA and Gargett CE: Inhibition of transforming growth factor-β receptor signaling promotes culture expansion of undifferentiated human endometrial mesenchymal stem/stromal cells. Sci Rep. 5:150422015. View Article : Google Scholar | |
Lin TM, Tsai JL, Lin SD, Lai CS and Chang CC: Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev. 14:92–102. 2005. View Article : Google Scholar : PubMed/NCBI | |
Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS and Park JK: Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng. 105:586–594. 2008. View Article : Google Scholar : PubMed/NCBI | |
Su ZY, Shu L, Khor TO, Lee JH, Fuentes F and Kong AN: A perspective on dietary phytochemicals and cancer chemo-prevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem. 329:133–162. 2013. View Article : Google Scholar | |
Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, Ohtani A, Morita K, Hirano T, Terai M, et al: Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim. 43:129–138. 2007. View Article : Google Scholar : PubMed/NCBI | |
Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, Jensen TG and Kassem M: Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 20:592–596. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S and Wang S: Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol. 227:3216–3224. 2012. View Article : Google Scholar : | |
Gharibi B, Farzadi S, Ghuman M and Hughes FJ: Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells. 32:2256–2266. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Cao X, Jiang J, Li L, Da Z, Liu H and Cheng C: Upregulation of p16INK4A promotes cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Cell Signal. 24:2307–2314. 2012. View Article : Google Scholar : PubMed/NCBI | |
Okada M, Kim HW, Matsu-Ura K, Wang YG, Xu M and Ashraf M: Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells. 34:148–159. 2016. View Article : Google Scholar : | |
Gharibi B and Hughes FJ: Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med. 1:771–782. 2012. View Article : Google Scholar : PubMed/NCBI |