1
|
Ferlay J, Héry C, Autier P and
Sankaranarayanan R: Global burden of breast cancer. Breast Cancer
Epidemiology. Li C: Springer; New York: pp. 1–19. 2010, View Article : Google Scholar
|
2
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Key T, Appleby P, Barnes I, Reeves G and
Endogenous H; Endogenous Hormones and Breast Cancer Collaborative
Group: Endogenous sex hormones and breast cancer in postmenopausal
women: Reanalysis of nine prospective studies. J Natl Cancer Inst.
94:606–616. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Skobe M, Hawighorst T, Jackson DG, Prevo
R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K and Detmar
M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast
cancer metastasis. Nat Med. 7:192–198. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Clarke M, Collins R, Darby S, Davies C,
Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, et al
Early Breast Cancer Trialists' Collaborative Group (EBCTCG):
Effects of radiotherapy and of differences in the extent of surgery
for early breast cancer on local recurrence and 15-year survival:
An overview of the randomised trials. Lancet. 366:2087–2106. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Slamon DJ, Leyland-Jones B, Shak S, Fuchs
H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M,
et al: Use of chemotherapy plus a monoclonal antibody against HER2
for metastatic breast cancer that overexpresses HER2. N Engl J Med.
344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Meraviglia S, Eberl M, Vermijlen D, Todaro
M, Buccheri S, Cicero G, La Mendola C, Guggino G, D'Asaro M,
Orlando V, et al: In vivo manipulation of Vgamma9Vdelta2 T cells
with zoledronate and low-dose interleukin-2 for immunotherapy of
advanced breast cancer patients. Clin Exp Immunol. 161:290–297.
2010.PubMed/NCBI
|
9
|
Das S, Ferlito M, Kent OA, Fox-Talbot K,
Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, et al:
Nuclear miRNA regulates the mitochondrial genome in the heart. Circ
Res. 110:1596–1603. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dames S, Eilbeck K and Mao R: A
high-throughput next-generation sequencing assay for the
mitochondrial genome. Methods Mol Biol. 1264:77–88. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Handa Y, Inaho N and Nameki N: YaeJ is a
novel ribosome-associated protein in Escherichia coli that can
hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res.
39:1739–1748. 2011. View Article : Google Scholar
|
12
|
Akabane S, Ueda T, Nierhaus KH and
Takeuchi N: Ribosome rescue and translation termination at
non-standard stop codons by ICT1 in mammalian mitochondria. PLoS
Genet. 10:e10046162014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Richter R, Rorbach J, Pajak A, Smith PM,
Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN and
Chrzanowska-Lightowlers ZM: A functional peptidyl-tRNA hydrolase,
ICT1, has been recruited into the human mitochondrial ribosome.
EMBO J. 29:1116–1125. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Handa Y, Hikawa Y, Tochio N, Kogure H,
Inoue M, Koshiba S, Güntert P, Inoue Y, Kigawa T, Yokoyama S, et
al: Solution structure of the catalytic domain of the mitochondrial
protein ICT1 that is essential for cell vitality. J Mol Biol.
404:260–273. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kogure H, Handa Y, Nagata M, Kanai N,
Güntert P, Kubota K and Nameki N: Identification of residues
required for stalled-ribosome rescue in the codon-independent
release factor YaeJ. Nucleic Acids Res. 42:3152–3163. 2014.
View Article : Google Scholar :
|
16
|
Xie R, Zhang Y, Shen C, Cao X, Gu S and
Che X: Knockdown of immature colon carcinoma transcript-1 inhibits
proliferation of glioblastoma multiforme cells through Gap
2/mitotic phase arrest. Onco Targets Ther. 8:1119–1127.
2015.PubMed/NCBI
|
17
|
Sparrow JR and Cai B: Blue light-induced
apoptosis of A2E-containing RPE: Involvement of caspase-3 and
protection by Bcl-2. Invest Ophthalmol Vis Sci. 42:1356–1362.
2001.PubMed/NCBI
|
18
|
Yan LX, Huang XF, Shao Q, Huang MY, Deng
L, Wu QL, Zeng YX and Shao JY: MicroRNA miR-21 overexpression in
human breast cancer is associated with advanced clinical stage,
lymph node metastasis and patient poor prognosis. RNA.
14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Z, Xu D, Gao Y, Liu Y, Ren J, Yao Y,
Yin L, Chen J, Gan S and Cui X: Immature colon carcinoma transcript
1 is essential for prostate cancer cell viability and
proliferation. Cancer Biother Radiopharm. 30:278–284. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Lao X, Feng Q, He G, Ji M, Zhu D, Xu P,
Tang W, Xu J and Qin X: Immature colon carcinoma transcript-1
(ICT1) expression correlates with unfavorable prognosis and
survival in patients with colorectal cancer. Ann Surg Oncol.
23:3924–3933. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Y, He J, Zhang S, Yang Q, Wang B, Liu
Z and Wu X: Knockdown of immature colon carcinoma transcript-1
inhibits proliferation and promotes apoptosis of non-small cell
lung cancer cells. Technol Cancer Res Treat. Jul 13–2016.(Epub
ahead of print). doi:20161533034616657977. View Article : Google Scholar
|
22
|
Arellano M and Moreno S: Regulation of
CDK/cyclin complexes during the cell cycle. Int J Biochem Cell
Biol. 29:559–573. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ji YB, Wu D, Dai QC, Guo L and Chen N: The
research on the medicinal value of Amaryllidaceae plants. Appl Mech
Mater. 411–414:3223–3226. 2013. View Article : Google Scholar
|
24
|
Cmielová J and Rezáčová M:
p21Cip1/Waf1 protein and its function based on a
subcellular localization [corrected]. J Cell Biochem.
112:3502–3506. 2011. View Article : Google Scholar
|
25
|
Caputi M, Russo G, Esposito V, Mancini A
and Giordano A: Role of cell-cycle regulators in lung cancer. J
Cell Physiol. 205:319–327. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lim S and Kaldis P: Cdks, cyclins and
CKIs: Roles beyond cell cycle regulation. Development.
140:3079–3093. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hurley RL, Anderson KA, Franzone JM, Kemp
BE, Means AR and Witters LA: The
Ca2+/calmodulin-dependent protein kinase kinases are
AMP-activated protein kinase kinases. J Biol Chem. 280:29060–29066.
2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Morgensztern D and McLeod HL:
PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer
Drugs. 16:797–803. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Garcia-Haro L, Garcia-Gimeno MA, Neumann
D, Beullens M, Bollen M and Sanz P: Glucose-dependent regulation of
AMP-activated protein kinase in MIN6 beta cells is not affected by
the protein kinase A pathway. FEBS Lett. 586:4241–4247. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu J, Zhang T, Wang T, You L and Zhao Y:
PIM kinases: An overview in tumors and recent advances in
pancreatic cancer. Future Oncol. 10:865–876. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Meisse D, Van de Casteele M, Beauloye C,
Hainault I, Kefas BA, Rider MH, Foufelle F and Hue L: Sustained
activation of AMP-activated protein kinase induces c-Jun N-terminal
kinase activation and apoptosis in liver cells. FEBS Lett.
526:38–42. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shao JJ, Zhang AP, Qin W, Zheng L, Zhu YF
and Chen X: AMP-activated protein kinase (AMPK) activation is
involved in chrysin-induced growth inhibition and apoptosis in
cultured A549 lung cancer cells. Biochem Biophys Res Commun.
423:448–453. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chiang CW, Kanies C, Kim KW, Fang WB,
Parkhurst C, Xie M, Henry T and Yang E: Protein phosphatase 2A
dephosphorylation of phosphoserine 112 plays the gatekeeper role
for BAD-mediated apoptosis. Mol Cell Biol. 23:6350–6362. 2003.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Peso LD, González-García M, Page C,
Herrera R and Nuñez G: Interleukin-3 induced phosphorylation of BAD
through protein kinase Akt. Science. 278:687–689. 1997. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jin YP, Fishbein MC, Said JW, Jindra PT,
Rajalingam R, Rozengurt E and Reed EF: Anti-HLA class I
antibody-mediated activation of the PI3K/Akt signaling pathway and
induction of Bcl-2 and Bcl-xL expression in endothelial cells. Hum
Immunol. 65:291–302. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang H, Zhang Q, Wen Q, Zheng Y,
Lazarovici P, Jiang H, Lin J and Zheng W: Proline-rich Akt
substrate of 40kDa (PRAS40): A novel downstream target of PI3k/Akt
signaling pathway. Cell Signal. 24:17–24. 2012. View Article : Google Scholar
|
37
|
Porter AG and Jänicke RU: Emerging roles
of caspase-3 in apoptosis. Cell Death Differ. 6:99–104. 1999.
View Article : Google Scholar : PubMed/NCBI
|