1
|
Curtis EM, Moon RJ, Dennison EM, Harvey NC
and Cooper C: Recent advances in the pathogenesis and treatment of
osteoporosis. Clin Med (Lond). 15(Suppl 6): s92–s96. 2015.
View Article : Google Scholar
|
2
|
Piscitelli P, Iolascon G, Gimigliano F,
Gimigliano A, Marinelli A, Di Nuzzo R, Colì G, Di Paola L,
Gianicolo E, Chitano G, et al: Osteoporosis and cardiovascular
diseases' cosegregation: Epidemiological features. Clin Cases Miner
Bone Metab. 5:14–18. 2008.PubMed/NCBI
|
3
|
Wang Y, Tao Y, Hyman ME, Li J and Chen Y:
Osteoporosis in china. Osteoporos Int. 20:1651–1662. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Lin X, Xiong D, Peng YQ, Sheng ZF, Wu XY,
Wu XP, Wu F, Yuan LQ and Liao EY: Epidemiology and management of
osteoporosis in the People's Republic of China: Current
perspectives. Clin Interv Aging. 10:1017–1033. 2015.PubMed/NCBI
|
5
|
Geusens P: New insights into treatment of
osteoporosis in postmenopausal women. RMD Open. 1(Suppl 1):
e0000512015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xie C, Jin J, Lv X, Tao J, Wang R and Miao
D: Anti-aging effect of transplanted amniotic membrane mesenchymal
stem cells in a premature aging model of Bmi-1 deficiency. Sci Rep.
5:139752015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ma L, Aijima R, Hoshino Y, Yamaza H,
Tomoda E, Tanaka Y, Sonoda S, Song G, Zhao W, Nonaka K, et al:
Transplantation of mesenchymal stem cells ameliorates secondary
osteoporosis through interleukin-17-impaired functions of recipient
bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res
Ther. 6:1042015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Fang S, Deng Y, Gu P and Fan X: MicroRNAs
regulate bone development and regeneration. Int J Mol Sci.
16:8227–8253. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang GY, Wang J, Jia YJ, Han R, Li P and
Zhu DN: MicroRNA-9 promotes the neuronal differentiation of rat
bone marrow mesenchymal stem cells by activating autophagy. Neural
Regen Res. 10:314–320. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Varendi K, Kumar A, Härma MA and Andressoo
JO: miR-1, miR-10b, miR-155, and miR-191 are novel regulators of
BDNF. Cell Mol Life Sci. 71:4443–4456. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shakibaei M, Shayan P, Busch F, Aldinger
C, Buhrmann C, Lueders C and Mobasheri A: Resveratrol mediated
modulation of Sirt-1/Runx2 promotes osteogenic differentiation of
mesenchymal stem cells: Potential role of Runx2 deacetylation. PLoS
One. 7:e357122012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu Y, Zhou J, Li Y, Zhou Y, Cui Y, Yang G
and Hong Y: Rap1A regulates osteoblastic differentiation via the
ERK and p38 mediated signaling. PLoS One. 10:e01437772015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Y and Sarkar FH: MicroRNA targeted
therapeutic approach for pancreatic cancer. Int J Biol Sci.
12:326–337. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kuninty PR, Schnittert J, Storm G and
Prakash J: MicroRNA targeting to modulate tumor microenvironment.
Front Oncol. 6:32016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Taylor MA and Schiemann WP: Therapeutic
opportunities for targeting microRNAs in cancer. Mol Cell Ther.
2:1–13. 2014. View Article : Google Scholar
|
18
|
Ott CE, Grünhagen J, Jäger M, Horbelt D,
Schwill S, Kallenbach K, Guo G, Manke T, Knaus P, Mundlos S, et al:
MicroRNAs differentially expressed in postnatal aortic development
downregulate elastin via 3′ UTR and coding-sequence binding sites.
PLoS One. 6:e162502011. View Article : Google Scholar
|
19
|
Yan J, Guo D, Yang S, Sun H, Wu B and Zhou
D: Inhibition of miR-222-3p activity promoted osteogenic
differentiation of hBMSCs by regulating Smad5-RUNX2 signal axis.
Biochem Biophys Res Commun. 470:498–503. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Weilner S, Skalicky S, Salzer B, Keider V,
Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P,
Grillari-Voglauer R, et al: Differentially circulating miRNAs after
recent osteoporotic fractures can influence osteogenic
differentiation. Bone. 79:43–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang JF, Fu WM, He ML, Wang H, Wang WM,
Yu SC, Bian XW, Zhou J, Lin MC, Lu G, et al: MiR-637 maintains the
balance between adipocytes and osteoblasts by directly targeting
Osterix. Mol Biol Cell. 22:3955–3961. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Trompeter HI, Dreesen J, Hermann E,
Iwaniuk KM, Hafner M, Renwick N, Tuschl T and Wernet P: MicroRNAs
miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation
of unrestricted somatic stem cells from human cord blood. BMC
Genomics. 14:1112013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sun J, Fang K, Shen H and Qian Y:
MicroRNA-9 is a ponderable index for the prognosis of human
hepatocellular carcinoma. Int J Clin Exp Med. 8:17748–17756.
2015.
|
24
|
Drakaki A, Hatziapostolou M, Polytarchou
C, Vorvis C, Poultsides GA, Souglakos J, Georgoulias V and
Iliopoulos D: Functional microRNA high throughput screening reveals
miR-9 as a central regulator of liver oncogenesis by affecting the
PPARA-CDH1 pathway. BMC Cancer. 15:5422015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lund AH: miR-10 in development and cancer.
Cell Death Differ. 17:209–214. 2010. View Article : Google Scholar
|
26
|
Woltering JM and Durston AJ: MiR-10
represses HoxB1a and HoxB3a in zebrafish. PLoS One. 3:e13962008.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu J, Li Z, Hou Y and Fang W: Potential
mechanisms underlying the Runx2 induced osteogenesis of bone marrow
mesenchymal stem cells. Am J Transl Res. 7:2527–2535. 2015.
|
28
|
Choung HW, Lee DS, Lee HK, Shon WJ and
Park JC: Preameloblast-derived factors mediate osteoblast
differentiation of human bone marrow mesenchymal stem cells by
Runx2-osterix-BSP signaling. Tissue Eng Part A. 22:93–102. 2016.
View Article : Google Scholar
|
29
|
Salasznyk RM, Klees RF, Hughlock MK and
Plopper GE: ERK signaling pathways regulate the osteogenic
differentiation of human mesenchymal stem cells on collagen I and
vitronectin. Cell Commun Adhes. 11:137–153. 2004. View Article : Google Scholar
|
30
|
Saito T, Nishida K, Furumatsu T, Yoshida
A, Ozawa M and Ozaki T: Histone deacetylase inhibitors suppress
mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through
the inhibition of the MAPK signaling pathway in cultured human
chondrocytes. Osteoarthritis Cartilage. 21:165–174. 2013.
View Article : Google Scholar
|