1
|
Perera RH, Hernandez C, Zhou H, Kota P,
Burke A and Exner AA: Ultrasound imaging beyond the vasculature
with new generation contrast agents. Wiley Interdiscip Rev Nanomed
Nanobiotechnol. 7:593–608. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Casciaro S, Soloperto G, Greco A, Casciaro
E, Franchini R and Conversano F: Effectiveness of functionalized
nanosystems formultimodal molecular sensing and imaging in
medicine. IEEE Sens J. 6:2305–2312. 2013. View Article : Google Scholar
|
3
|
Maeda H, Wu J, Sawa T, Matsumura Y and
Hori K: Tumor vascular permeability and the EPR effect in
macromolecular therapeutics: A review. J Control Release.
65:271–284. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hahn MA, Singh AK, Sharma P, Brown SC and
Moudgil BM: Nanoparticles as contrast agents for in-vivo
bioimaging: Current status and future perspectives. Anal Bioanal
Chem. 399:3–27. 2011. View Article : Google Scholar
|
5
|
Kobayashi H, Turkbey B, Watanabe R and
Choyke PL: Cancer drug delivery: Considerations in the rational
design of nanosized bioconjugates. Bioconjug Chem. 25:2093–2100.
2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Orocio-Rodríguez E, Ferro-Flores G,
Santos-Cuevas CL, Ramírez FM, Ocampo-García BE, Azorín-Vega E and
Sánchez-García FM: Two novel nanosized radiolabeled analogues of
somatostatin for neuroendocrine tumor imaging. J Nanosci
Nanotechnol. 15:4159–4169. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Toy R, Bauer L, Hoimes C, Ghaghada KB and
Karathanasis E: Targeted nanotechnology for cancer imaging. Adv
Drug Deliv Rev. 76:79–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wilson KE, Wang TY and Willmann JK:
Acoustic and photo-acoustic molecular imaging of cancer. J Nucl
Med. 54:1851–1854. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gessner R and Dayton PA: Advances in
molecular imaging with ultrasound. Mol Imaging. 9:117–127.
2010.PubMed/NCBI
|
10
|
Zhao R, Matherly LH and Goldman ID:
Membrane transporters and folate homeostasis: Intestinal absorption
and transport into systemic compartments and tissues. Expert Rev
Mol Med. 11:e42009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shen F, Wu M, Ross JF, Miller D and Ratnam
M: Folate receptor type gamma is primarily a secretory protein due
to lack of an efficient signal for glycosylphosphatidylinositol
modification: Protein characterization and cell type specificity.
Biochemistry. 34:5660–5665. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kane MA: The role of folates in squamous
cell carcinoma of the head and neck. Cancer Detect Prev. 29:46–53.
2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hartmann LC, Keeney GL, Lingle WL,
Christianson TJ, Varghese B, Hillman D, Oberg AL and Low PS: Folate
receptor overexpression is associated with poor outcome in breast
cancer. Int J Cancer. 121:938–942. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
O'Shannessy DJ, Yu G, Smale R, Fu YS,
Singhal S, Thiel RP, Somers EB and Vachani A: Folate receptor alpha
expression in lung cancer: Diagnostic and prognostic significance.
Oncotarget. 3:414–425. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Parker N, Turk MJ, Westrick E, Lewis JD,
Low PS and Leamon CP: Folate receptor expression in carcinomas and
normal tissues determined by a quantitative radioligand binding
assay. Anal Biochem. 338:284–293. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Assaraf YG, Leamon CP and Reddy JA: The
folate receptor as a rational therapeutic target for personalized
cancer treatment. Drug Resist Updat. 17:89–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu M, Gunning W and Ratnam M: Expression
of folate receptor type α in relation to cell type, malignancy, and
differentiation in ovary, uterus, and cervix. Cancer Epidemiol
Biomarkers Prev. 8:775–782. 1999.PubMed/NCBI
|
18
|
Kalli KR, Oberg AL, Keeney GL,
Christianson TJ, Low PS, Knutson KL and Hartmann LC: Folate
receptor alpha as a tumor target in epithelial ovarian cancer.
Gynecol Oncol. 108:619–626. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bueno R, Appasani K, Mercer H, Lester S
and Sugarbaker D: The α folate receptor is highly activated in
malignant pleural mesothelioma. J Thorac Cardiovasc Surg.
121:225–233. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lu Y, Sega E and Low PS: Folate
receptor-targeted immunotherapy: Induction of humoral and cellular
immunity against hapten-decorated cancer cells. Int J Cancer.
116:710–719. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Siafaka P, Betsiou M, Tsolou A, Angelou E,
Agianian B, Koffa M, Chaitidou S, Karavas E, Avgoustakis K and
Bikiaris D: Synthesis of folate-pegylated polyester nanoparticles
encapsulating ixabepilone for targeting folate receptor
overexpressing breast cancer cells. J Mater Sci Mater Med.
26:2752015. View Article : Google Scholar
|
22
|
Liu X, Zhao J, Guo D, Wang Z, Song W, Chen
W and Zhou J: Synthesis and evaluation of perfluorooctylbromide
nanoparticles modified with a folate receptor for targeting ovarian
cancer: in vitro and in vivo experiments. Int J Clin Exp Med.
8:10122–10131. 2015.PubMed/NCBI
|
23
|
Zhou J, Romero G, Rojas E, Ma L, Moya S
and Gao C: Layer by layer chitosan/alginate coatings on
poly(lactide-co-glycolide) nanoparticles for antifouling protection
and Folic acid binding to achieve selective cell targeting. J
Colloid Interface Sci. 345:241–247. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Elhissi AM, O'Neill MA, Roberts SA and
Taylor KM: A calori-metric study of dimyristoylphosphatidylcholine
phase transitions and steroid-liposome interactions for liposomes
prepared by thin film and proliposome methods. Int J Pharm.
320:124–130. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Salem HF, Ahmed SM, Hassaballah AE and
Omar MM: Targeting brain cells with glutathione-modulated
nanoliposomes: In vitro and in vivo study. Drug Des Devel Ther.
9:3705–3727. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Barnett BP, Ruiz-Cabello J, Hota P,
Ouwerkerk R, Shamblott MJ, Lauzon C, Walczak P, Gilson WD, Chacko
VP, Kraitchman DL, et al: Use of perfluorocarbon nanoparticles for
non-invasive multimodal cell tracking of human pancreatic islets.
Biomaterials. 35:9984–9994. 2014.
|
27
|
Kim J, Lee CM, Jeong HJ and Lee KY: In
vivo tumor accumulation of nanoparticles formed by ionic
interaction of glycol chitosan and fatty acid ethyl ester. J
Nanosci Nanotechnol. 11:1160–1166. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Alencar H, Funovics MA, Figueiredo J,
Sawaya H, Weissleder R and Mahmood U: Colonic adenocarcinomas:
Near-infrared microcatheter imaging of smart probes for early
detection - study in mice. Radiology. 244:232–238. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hawrysz DJ and Sevick-Muraca EM:
Developments toward diagnostic breast cancer imaging using
near-infrared optical measurements and fluorescent contrast agents.
Neoplasia. 2:388–417. 2000. View Article : Google Scholar
|
30
|
Zheng C, Zheng M, Gong P, Jia D, Zhang P,
Shi B, Sheng Z, Ma Y and Cai L: Indocyanine green-loaded
biodegradable tumor targeting nanoprobes for in vitro and in vivo
imaging. Biomaterials. 33:5603–5609. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hama Y, Koyama Y, Choyke PL and Kobayashi
H: Two-color in vivo dynamic contrast-enhanced pharmacokinetic
imaging. J Biomed Opt. 12:0340162007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nakamura T, Kawano K, Shiraishi K,
Yokoyama M and Maitani Y: Folate-targeted gadolinium-lipid-based
nanoparticles as a bimodal contrast agent for tumor fluorescent and
magnetic resonance imaging. Biol Pharm Bull. 37:521–527. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Chung EJ, Mlinar LB, Sugimoto MJ, Nord K,
Roman BB and Tirrell M: In vivo biodistribution and clearance of
peptide amphiphile micelles. Nanomedicine. 11:479–487. 2015.
View Article : Google Scholar
|
34
|
Chung EJ, Cheng Y, Morshed R, Nord K, Han
Y, Wegscheid ML, Auffinger B, Wainwright DA, Lesniak MS and Tirrell
MV: Fibrin-binding, peptide amphiphile micelles for targeting
glioblastoma. Biomaterials. 35:1249–1256. 2014. View Article : Google Scholar
|
35
|
Blomqvist L, Carlsson S, Gjertsson P,
Heintz E, Hultcrantz M, Mejare I and Andrén O: Limited evidence for
the use of imaging to detect prostate cancer: A systematic review.
Eur J Radiol. 83:1601–1606. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sivasubramanian M, Hsia Y and Lo LW:
Nanoparticle-facilitated functional and molecular imaging for the
early detection of cancer. Front Mol Biosci. 1:152014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Giraudeau C, Geffroy F, Mériaux S,
Boumezbeur F, Robert P, Port M, Robic C, Le Bihan D, Lethimonnier F
and Valette J: 19F molecular MR imaging for detection of brain
tumor angiogenesis: In vivo validation using targeted PFOB
nanoparticles. Angiogenesis. 16:171–179. 2013. View Article : Google Scholar
|
38
|
Vu-Quang H, Vinding MS, Xia D, Nielsen T,
Ullisch MG, Dong M, Nielsen NC and Kjems J: Chitosan-coated
poly(lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles
for cell labeling in (19)F magnetic resonance imaging. Carbohydr
Polym. 136:936–944. 2016. View Article : Google Scholar
|
39
|
Watanabe T, Kimura Y and Ono T:
Microfluidic fabrication of monodisperse polylactide microcapsules
with tunable structures through rapid precipitation. Langmuir.
29:14082–14088. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Decato S, Bemis T, Madsen E and Mecozzi S:
Synthesis and characterization of perfluoro-tert-butyl
semifluorinated amphiphilic polymers and their potential
application in hydrophobic drug delivery. Polym Chem. 5:6461–6471.
2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Marsh JN, Hall CS, Scott MJ, Fuhrhop RW,
Gaffney PJ, Wickline SA and Lanza GM: Improvements in the
ultrasonic contrast of targeted perfluorocarbon nanoparticles using
an acoustic transmission line model. IEEE Trans Ultrason
Ferroelectr Freq Control. 49:29–38. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Marsh JN, Partlow KC, Abendschein DR,
Scott MJ, Lanza GM and Wickline SA: Molecular imaging with targeted
perfluorocarbon nanoparticles: Quantification of the concentration
dependence of contrast enhancement for binding to sparse cellular
epitopes. Ultrasound Med Biol. 33:950–958. 2007. View Article : Google Scholar : PubMed/NCBI
|