1
|
Hossain M, Zimmerman C, Abas M, Light M
and Watts C: The relationship of trauma to mental disorders among
trafficked and sexually exploited girls and women. Am J Public
Health. 100:2442–2449. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tully PJ, Winefield HR, Baker RA, Denollet
J, Pedersen SS, Wittert GA and Turnbull DA: Depression, anxiety and
major adverse cardiovascular and cerebrovascular events in patients
following coronary artery bypass graft surgery: A five year
longitudinal cohort study. Biopsychosoc Med. 9:142015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Castillo RC, Wegener ST, Heins SE,
Haythornthwaite JA and Mackenzie EJ: Longitudinal relationships
between anxiety, depression, and pain: Results from a two-year
cohort study of lower extremity trauma patients. Pain.
154:2860–2866. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Karanci AN and Dirik G: Predictors of pre-
and postoperative anxiety in emergency surgery patients. J
Psychosom Res. 55:363–369. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Norrholm SD and Ressler KJ: Genetics of
anxiety and trauma-related disorders. Neuroscience. 164:272–287.
2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Renoir T, Hasebe K and Gray L: Mind and
body: How the health of the body impacts on neuropsychiatry. Front
Pharmacol. 4:1582013. View Article : Google Scholar
|
7
|
Seitz DP, Bell CM, Gill SS, Reimer CL,
Herrmann N, Anderson GM, Newman A and Rochon PA: Risk of
perioperative blood transfusions and postoperative complications
associated with serotonergic antidepressants in older adults
undergoing hip fracture surgery. J Clin Psychopharmacol.
33:790–798. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jeong BO, Kim SW, Kim SY, Kim JM, Shin IS
and Yoon JS: Use of serotonergic antidepressants and bleeding risk
in patients undergoing surgery. Psychosomatics. 55:213–220. 2014.
View Article : Google Scholar
|
9
|
Pariante CM and Lightman SL: The HPA axis
in major depression: Classical theories and new developments.
Trends Neurosci. 31:464–468. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zuloaga DG, Jacobskind JS and Raber J:
Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front
Neurosci. 9:1782015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jacobson L:
Hypothalamic-pituitary-adrenocortical axis: Neuropsychiatric
aspects. Compr Physiol. 4:715–738. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fan HM, Sun XY, Guo W, Zhong AF, Niu W,
Zhao L, Dai YH, Guo ZM, Zhang LY and Lu J: Differential expression
of microRNA in peripheral blood mononuclear cells as specific
biomarker for major depressive disorder patients. J Psychiatr Res.
59:45–52. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Durairaj RV and Koilmani ER: Environmental
enrichment modulates glucocorticoid receptor expression and reduces
anxiety in Indian field male mouse Mus booduga through upregulation
of microRNA-124a. Gen Comp Endocrinol. 199:26–32. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hanin G, Shenhar-Tsarfaty S, Yayon N, Yau
YH, Bennett ER, Sklan EH, Rao DC, Rankinen T, Bouchard C,
Geifman-Shochat S, et al: Competing targets of microRNA-608 affect
anxiety and hypertension. Hum Mol Genet. 23:4569–4580. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang YN, Lai CC, Chiu CT, Lin JJ and Wang
JY: L-ascorbate attenuates the endotoxin-induced production of
inflammatory mediators by inhibiting MAPK activation and NF-κB
translocation in cortical neurons/glia Cocultures. PLoS One.
9:e972762014. View Article : Google Scholar
|
16
|
Sotnikov S, Wittmann A, Bunck M, Bauer S,
Deussing J, Schmidt M, Touma C, Landgraf R and Czibere L: Blunted
HPA axis reactivity reveals glucocorticoid system dysbalance in a
mouse model of high anxiety-related behavior.
Psychoneuroendocrinology. 48:41–51. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Martín-Blanco A, Ferrer M, Soler J, Arranz
MJ, Vega D, Calvo N, Elices M, Sanchez-Mora C, García-Martinez I,
Salazar J, et al: The role of hypothalamus-pituitary-adrenal genes
and childhood trauma in borderline personality disorder. Eur Arch
Psychiatry Clin Neurosci. 266:307–316. 2016. View Article : Google Scholar
|
18
|
Li C, Liu Y, Yin S, Lu C, Liu D, Jiang H
and Pan F: Long-term effects of early adolescent stress:
Dysregulation of hypothalamic-pituitary-adrenal axis and central
corticotropin releasing factor receptor 1 expression in adult male
rats. Behav Brain Res. 288:39–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cipriano C, Giacconi R, Muzzioli M,
Gasparini N, Orlando F, Corradi A, Cabassi E and Mocchegiani E:
Metallothionein (I+II) confers, via c-myc, immune plasticity in
oldest mice: Model of partial hepatectomy/liver regeneration. Mech
Ageing Dev. 124:877–886. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Witek-Janusek L, Yu M and Marotta SF:
Hypoxic and nycthemeral responses by the adrenal cortex of
partially hepatectomized rats. Aviat Space Environ Med. 55:538–541.
1984.PubMed/NCBI
|
21
|
Bonfiglio JJ, Inda C, Refojo D, Holsboer
F, Arzt E and Silberstein S: The corticotropin-releasing hormone
network and the hypothalamic-pituitary-adrenal axis: Molecular and
cellular mechanisms involved. Neuroendocrinology. 94:12–20. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wasserman D, Wasserman J and Sokolowski M:
Genetics of HPA-axis, depression and suicidality. Eur Psychiatry.
25:278–280. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ono N, Samson WK, McDonald JK, Lumpkin MD,
Bedran de Castro JC and McCann SM: Effects of intravenous and
intraventricular injection of antisera directed against
corticotropin-releasing factor on the secretion of anterior
pituitary hormones. Proc Natl Acad Sci USA. 82:7787–7790. 1985.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fan JM, Wang X, Hao K, Yuan Y, Chen XQ and
Du JZ: Upregulation of PVN CRHR1 by gestational intermittent
hypoxia selectively triggers a male-specific anxiogenic effect in
rat offspring. Horm Behav. 63:25–31. 2013. View Article : Google Scholar
|
25
|
Sotnikov SV, Chekmareva NY, Schmid B,
Harbich D, Malik V, Bauer S, Kuehne C, Markt PO, Deussing JM,
Schmidt MV, et al: Enriched environment impacts
trimethylthiazoline-induced anxiety-related behavior and immediate
early gene expression: Critical role of Crhr1. Eur J Neurosci.
40:2691–2700. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Labermaier C, Kohl C, Hartmann J, Devigny
C, Altmann A, Weber P, Arloth J, Quast C, Wagner KV, Scharf SH, et
al: A polymorphism in the Crhr1 gene determines stress
vulnerability in male mice. Endocrinology. 155:2500–2510. 2014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Schatzberg AF, Keller J, Tennakoon L,
Lembke A, Williams G, Kraemer FB, Sarginson JE, Lazzeroni LC and
Murphy GM: HPA axis genetic variation, cortisol and psychosis in
major depression. Mol Psychiatry. 19:220–227. 2014. View Article : Google Scholar
|
28
|
Wang X, Meng FS, Liu ZY, Fan JM, Hao K,
Chen XQ and Du JZ: Gestational hypoxia induces sex-differential
methylation of Crhr1 linked to anxiety-like behavior. Mol
Neurobiol. 48:544–555. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Silberman Y and Winder DG: Corticotropin
releasing factor and catecholamines enhance glutamatergic
neurotransmission in the lateral subdivision of the central
amygdala. Neuropharmacology. 70:316–323. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lowery-Gionta EG, Navarro M, Li C, Pleil
KE, Rinker JA, Cox BR, Sprow GM, Kash TL and Thiele TE:
Corticotropin releasing factor signaling in the central amygdala is
recruited during binge-like ethanol consumption in C57BL/6J mice. J
Neurosci. 32:3405–3413. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Im HI and Kenny PJ: MicroRNAs in neuronal
function and dysfunction. Trends Neurosci. 35:325–334. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Hu Z, Yu D, Gu QH, Yang Y, Tu K, Zhu J and
Li Z: miR-191 and miR-135 are required for long-lasting spine
remodelling associated with synaptic long-term depression. Nat
Commun. 5:32632014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang
YX, Li XX, Zhang C, Xie SY and Wang PY: Alterations of serum levels
of BDNF-related miRNAs in patients with depression. PLoS One.
8:e636482013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Briones TL and Woods J: Chronic binge-like
alcohol consumption in adolescence causes depression-like symptoms
possibly mediated by the effects of BDNF on neurogenesis.
Neuroscience. 254:324–334. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yoneyama M, Tanaka M, Hasebe S, Yamaguchi
T, Shiba T and Ogita K: Beneficial effect of cilostazol-mediated
neuronal repair following trimethyltin-induced neuronal loss in the
dentate gyrus. J Neurosci Res. 93:56–66. 2015. View Article : Google Scholar
|
36
|
Fiore R, Rajman M, Schwale C, Bicker S,
Antoniou A, Bruehl C, Draguhn A and Schratt G: MiR-134-dependent
regulation of Pumilio-2 is necessary for homeostatic synaptic
depression. EMBO J. 33:2231–2246. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lopez JP, Lim R, Cruceanu C, Crapper L,
Fasano C, Labonte B, Maussion G, Yang JP, Yerko V, Vigneault E, et
al: miR-1202 is a primate-specific and brain-enriched microRNA
involved in major depression and antidepressant treatment. Nat Med.
20:764–768. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Serafini G, Pompili M, Hansen KF, Obrietan
K, Dwivedi Y, Shomron N and Girardi P: The involvement of microRNAs
in major depression, suicidal behavior, and related disorders: A
focus on miR-185 and miR-491-3p. Cell Mol Neurobiol. 34:17–30.
2014. View Article : Google Scholar
|
39
|
He Y, Zhou Y, Xi Q, Cui H, Luo T, Song H,
Nie X, Wang L and Ying B: Genetic variations in microRNA processing
genes are associated with susceptibility in depression. DNA Cell
Biol. 31:1499–1506. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Meyer DL, Davies DR, Barr JL, Manzerra P
and Forster GL: Mild traumatic brain injury in the rat alters
neuronal number in the limbic system and increases conditioned fear
and anxiety-like behaviors. Exp Neurol. 235:574–587. 2012.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kageyama K, Itoi K, Iwasaki Y, Niioka K,
Watanuki Y, Yamagata S, Nakada Y, Das G, Suda T and Daimon M:
Stimulation of corticotropin-releasing factor gene expression by
FosB in rat hypothalamic 4B cells. Peptides. 51:59–64. 2014.
View Article : Google Scholar
|
42
|
Nikodemova M, Kasckow J, Liu H,
Manganiello V and Aguilera G: Cyclic adenosine 3′,5′-monophosphate
regulation of corticotropin-releasing hormone promoter activity in
AtT-20 cells and in a transformed hypothalamic cell line.
Endocrinology. 144:1292–1300. 2003. View Article : Google Scholar : PubMed/NCBI
|