The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review)
- Authors:
- Fatima Ardito
- Michele Giuliani
- Donatella Perrone
- Giuseppe Troiano
- Lorenzo Lo Muzio
-
Affiliations: Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy - Published online on: June 22, 2017 https://doi.org/10.3892/ijmm.2017.3036
- Pages: 271-280
-
Copyright: © Ardito et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Li X, Wilmanns M, Thornton J and Köhn M: Elucidating human phosphatase-substrate networks. Sci Signal. 6:rs102013. View Article : Google Scholar : PubMed/NCBI | |
Sacco F, Perfetto L, Castagnoli L and Cesareni G: The human phosphatase interactome: an intricate family portrait. FEBS Lett. 586:2732–2739. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Molecular Biology of the Cell. Anderson M and Granum S: 5th edition. Garland Science; New York, NY: pp. 1752007 | |
Hunter T: Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond B Biol Sci. 367:2513–2516. 2009. View Article : Google Scholar | |
Fukami Y and Lipmann F: Reversal of Rous sarcoma-specific immunoglobulin phosphorylation on tyrosine (ADP as phosphate acceptor) catalyzed by the src gene kinase. Proc Natl Acad Sci USA. 80:1872–1876. 1983. View Article : Google Scholar : PubMed/NCBI | |
Kole HK, Abdel-Ghany M and Racker E: Specific dephosphorylation of phosphoproteins by protein-serine and -tyrosine kinases. Proc Natl Acad Sci USA. 85:5849–5853. 1988. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 66:105–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schwartz PA and Murray BW: Protein kinase biochemistry and drug discovery. Bioorg Chem. 39:192–210. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishi H, Shaytan A and Panchenko AR: Physicochemical mechanisms of protein regulation by phosphorylation. Front Genet. 5:2702014. View Article : Google Scholar : PubMed/NCBI | |
McCance KL and Huether SE: Pathophysiology: The Biologic Basis for Disease in Adults and Children. Brashers VL and Rote NS: 7th edition. Elsevier; 2014 | |
Hornberg JJ, Bruggeman FJ, Binder B, Geest CR, de Vaate AJ, Lankelma J, Heinrich R and Westerhoff HV: Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J. 272:244–258. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tonks NK: Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 7:833–846. 2006. View Article : Google Scholar : PubMed/NCBI | |
Heinrich R, Neel BG and Rapoport TA: Mathematical models of protein kinase signal transduction. Mol Cell. 9:957–970. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liberti S, Sacco F, Calderone A, Perfetto L, Iannuccelli M, Panni S, Santonico E, Palma A, Nardozza AP, Castagnoli L, et al: HuPho: the human phosphatase portal. FEBS J. 280:379–387. 2013. View Article : Google Scholar | |
Hatzihristidis T, Liu S, Pryszcz L, Hutchins AP, Gabaldón T, Tremblay ML and Miranda-Saavedra D: PTP-central: a comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods. 65:156–164. 2014. View Article : Google Scholar | |
Miller ML, Jensen LJ, Diella F, Jørgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, et al: Linear motif atlas for phosphorylation-dependent signaling. Sci Signal. 1:–ra2. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hunter T: Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol. 21:140–146. 2009. View Article : Google Scholar : PubMed/NCBI | |
Capra M, Nuciforo PG, Confalonieri S, Quarto M, Bianchi M, Nebuloni M, Boldorini R, Pallotti F, Viale G, Gishizky ML, et al: Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res. 66:8147–8154. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jin J and Pawson T: Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci. 367:2540–2555. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pearce LR, Komander D and Alessi DR: The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 11:9–22. 2010. View Article : Google Scholar | |
Wayman GA, Tokumitsu H, Davare MA and Soderling TR: Analysis of CaM-kinase signaling in cells. Cell Calcium. 50:1–8. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eide EJ and Virshup DM: Casein kinase I: another cog in the circadian clockworks. Chronobiol Int. 18:389–398. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sundaram MV: RTK/Ras/MAPK signaling. WormBook: pp. 1–19. 2006, View Article : Google Scholar | |
Cohen P and Goedert M: GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov. 3:479–487. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moeslein FM, Myers MP and Landreth GE: The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B. J Biol Chem. 274:26697–26704. 1999. View Article : Google Scholar : PubMed/NCBI | |
Müller-Taubenberger A, Ishikawa-Ankerhold HC, Kastner PM, Burghardt E and Gerisch G: The STE group kinase SepA controls cleavage furrow formation in Dictyostelium. Cell Motil Cytoskeleton. 66:929–939. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abdi AI, Carvalho TG, Wilkes JM and Doerig C: A secreted Plasmodium falciparum kinase reveals a signature motif for classification of tyrosine kinase-like kinases. Microbiology. 159:2533–2547. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barford D: Molecular mechanisms of the protein serine/thre-onine phosphatases. Trends Biochem Sci. 21:407–412. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZY: Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol. 42:209–234. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mackintosh C: Protein Phosphorylation: A Practical Approach. Hardie GD: IRL Press; New York, NY: pp. 3281993 | |
Thingholm TE, Larsen MR, Ingrell CR, Kassem M and Jensen ON: TiO(2)-based phosphoproteomic analysis of the plasma membrane and the effects of phosphatase inhibitor treatment. J Proteome Res. 7:3304–3313. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stern DF: Phosphoproteomics for oncology discovery and treatment. Expert Opin Ther Targets. 9:851–860. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Chance MR: Integrating phosphoproteomics in systems biology. Comput Struct Biotechnol J. 10:90–97. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moorhead GB, De Wever V, Templeton G and Kerk D: Evolution of protein phosphatases in plants and animals. Biochem J. 417:401–409. 2009. View Article : Google Scholar | |
Das AK, Helps NR, Cohen PT and Barford D: Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 15:6798–6809. 1996.PubMed/NCBI | |
Shi Y: Serine/threonine phosphatases: mechanism through structure. Cell. 139:468–484. 2009. View Article : Google Scholar : PubMed/NCBI | |
Virshup DM and Shenolikar S: From promiscuity to precision: protein phosphatases get a makeover. Mol Cell. 33:537–545. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guan KL and Dixon JE: Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 266:17026–17030. 1991.PubMed/NCBI | |
Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J and Mustelin T: Protein tyrosine phosphatases in the human genome. Cell. 117:699–711. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tonks NK and Neel BG: Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 13:182–195. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wrighton KH, Willis D, Long J, Liu F, Lin X and Feng XH: Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J Biol Chem. 281:38365–38375. 2006. View Article : Google Scholar : PubMed/NCBI | |
Archambault J, Pan G, Dahmus GK, Cartier M, Marshall N, Zhang S, Dahmus ME and Greenblatt J: FCP1, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase IIO. J Biol Chem. 273:27593–27601. 1998. View Article : Google Scholar : PubMed/NCBI | |
Salton SR: Teaching resources. Protein phosphatases. Sci STKE. 2005:tr82005.PubMed/NCBI | |
Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE and Rebay I: The transcription factor eyes absent is a protein tyrosine phosphatase. Nature. 426:299–302. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gentry MS, Dixon JE and Worby CA: Lafora disease: insights into neurodegeneration from plant metabolism. Trends Biochem Sci. 34:628–639. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gentry MS, Dowen RH III, Worby CA, Mattoo S, Ecker JR and Dixon JE: The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. J Cell Biol. 178:477–488. 2007. View Article : Google Scholar : PubMed/NCBI | |
Niittylä T, Comparot-Moss S, Lue WL, Messerli G, Trevisan M, Seymour MD, Gatehouse JA, Villadsen D, Smith SM, Chen J, et al: Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. J Biol Chem. 281:11815–11818. 2006. View Article : Google Scholar : PubMed/NCBI | |
Case N, Thomas J, Sen B, Styner M, Xie Z, Galior K and Rubin J: Mechanical regulation of glycogen synthase kinase 3β (GSK3β) in mesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein. J Biol Chem. 286:39450–39456. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cole PA, Shen K, Qiao Y and Wang D: Protein tyrosine kinases Src and Csk: a tail's tale. Curr Opin Chem Biol. 7:580–585. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nishi H, Hashimoto K and Panchenko AR: Phosphorylation in protein-protein binding: effect on stability and function. Structure. 19:1807–1815. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishi H, Fong JH, Chang C, Teichmann SA and Panchenko AR: Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Mol Biosyst. 9:1620–1626. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T and Hattori S: Neph1, a component of the kidney slit diaphragm, is tyrosine-phosphorylated by the Src family tyrosine kinase and modulates intracellular signaling by binding to Grb2. J Biol Chem. 283:9177–9186. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kuwahara H, Nishizaki M and Kanazawa H: Nuclear localization signal and phosphorylation of Serine350 specify intracellular localization of DRAK2. J Biochem. 143:349–358. 2008. View Article : Google Scholar | |
Shimazaki Y, Nishiki T, Omori A, Sekiguchi M, Kamata Y, Kozaki S and Takahashi M: Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem. 271:14548–14553. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kataoka M, Kuwahara R, Iwasaki S, Shoji-Kasai Y and Takahashi M: Nerve growth factor-induced phosphorylation of SNAP-25 in PC12 cells: a possible involvement in the regulation of SNAP-25 localization. J Neurochem. 74:2058–2066. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rosen OM and Erlichman J: Reversible autophosphorylation of a cyclic 3′:5′-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 250:7788–7794. 1975.PubMed/NCBI | |
Hunter T: The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 28:730–738. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Sarikas A, Dias-Santagata DC, Dolios G, Lafontant PJ, Tsai SC, Zhu W, Nakajima H, Nakajima HO, Field LJ, et al: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell. 30:403–414. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC and Thomas G: S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol. 24:3112–3124. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ferrer I, Blanco R, Carmona M, Puig B, Domínguez I and Viñals F: Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat. Acta Neuropathol. 103:391–407. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chang L and Karin M: Mammalian MAP kinase signalling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI | |
Darnell JE Jr, Kerr IM and Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 264:1415–1421. 1994. View Article : Google Scholar : PubMed/NCBI | |
Greenlund AC, Farrar MA, Viviano BL and Schreiber RD: Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J. 13:1591–1600. 1994.PubMed/NCBI | |
Igarashi K, Garotta G, Ozmen L, Ziemiecki A, Wilks AF, Harpur AG, Larner AC and Finbloom DS: Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J Biol Chem. 269:14333–14336. 1994.PubMed/NCBI | |
Decker T and Kovarik P: Serine phosphorylation of STATs. Oncogene. 19:2628–2637. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang Y and Xue Y: Phosphoproteomics-based network medicine. FEBS J. 280:5696–5704. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hirschi A, Cecchini M, Steinhardt RC, Schamber MR, Dick FA and Rubin SM: An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol. 17:1051–1057. 2010. View Article : Google Scholar : PubMed/NCBI | |
Salazar C and Höfer T: Competition effects shape the response sensitivity and kinetics of phosphorylation cycles in cell signaling. Ann NY Acad Sci. 1091:517–530. 2006. View Article : Google Scholar | |
Lienhard GE: Non-functional phosphorylations? Trends Biochem Sci. 33:351–352. 2008. View Article : Google Scholar : PubMed/NCBI | |
Landry CR, Levy ED and Michnick SW: Weak functional constraints on phosphoproteomes. Trends Genet. 25:193–197. 2009. View Article : Google Scholar : PubMed/NCBI | |
Levy ED, Michnick SW and Landry CR: Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information. Philos Trans R Soc Lond B Biol Sci. 367:2594–2606. 2012. View Article : Google Scholar : PubMed/NCBI | |
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127:635–648. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al: Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar : PubMed/NCBI | |
Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, et al: Systematic discovery of in vivo phosphorylation networks. Cell. 129:1415–1426. 2007. View Article : Google Scholar : PubMed/NCBI | |
Newman RH, Hu J, Rho HS, Xie Z, Woodard C, Neiswinger J, Cooper C, Shirley M, Clark HM, Hu S, et al: Construction of human activity-based phosphorylation networks. Mol Syst Biol. 9:6552013. View Article : Google Scholar : PubMed/NCBI | |
Drake JM, Graham NA, Stoyanova T, Sedghi A, Goldstein AS, Cai H, Smith DA, Zhang H, Komisopoulou E, Huang J, et al: Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression. Proc Natl Acad Sci USA. 109:1643–1648. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harsha HC and Pandey A: Phosphoproteomics in cancer. Mol Oncol. 4:482–495. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hynes NE and MacDonald G: ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 21:177–184. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Tan TH, Cheetham G, Scott HS and Brown MP: Rare and novel epidermal growth factor receptor mutations in non-small-cell lung cancer and lack of clinical response to gefitinib in two cases. J Thorac Oncol. 7:941–942. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B and Kinzler KW: Cancer genes and the pathways they control. Nat Med. 10:789–799. 2004. View Article : Google Scholar : PubMed/NCBI | |
Petricoin EF, Zoon KC, Kohn EC, Barrett JC and Liotta LA: Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 1:683–695. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002.PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tarrant MK and Cole PA: The chemical biology of protein phosphorylation. Annu Rev Biochem. 78:797–825. 2009. View Article : Google Scholar : PubMed/NCBI | |
Paul MK and Mukhopadhyay AK: Tyrosine kinase - role and significance in cancer. Int J Med Sci. 1:101–115. 2004. View Article : Google Scholar | |
Murphree AL and Benedict WF: Retinoblastoma: clues to human oncogenesis. Science. 223:1028–1033. 1984. View Article : Google Scholar : PubMed/NCBI | |
Stehelin D, Guntaka RV, Varmus HE and Bishop JM: Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses. J Mol Biol. 101:349–365. 1976. View Article : Google Scholar : PubMed/NCBI | |
Hunter T and Cooper JA: Protein-tyrosine kinases. Annu Rev Biochem. 54:897–930. 1985. View Article : Google Scholar : PubMed/NCBI | |
Sefton BM and Hunter T: From c-src to v-src, or the case of the missing C terminus. Cancer Surv. 5:159–172. 1986.PubMed/NCBI | |
Sefton BM, Hunter T and Raschke WC: Evidence that the Abelson virus protein functions in vivo as a protein kinase that phosphorylates tyrosine. Proc Natl Acad Sci USA. 78:1552–1556. 1981. View Article : Google Scholar : PubMed/NCBI | |
Sefton BM, Hunter T, Beemon K and Eckhart W: Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell. 20:807–816. 1980. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Doshi A, Lei M, Eck MJ and Harrison SC: Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell. 3:629–638. 1999. View Article : Google Scholar : PubMed/NCBI | |
Young MA, Gonfloni S, Superti-Furga G, Roux B and Kuriyan J: Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell. 105:115–126. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shawver LK, Slamon D and Ullrich A: Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell. 1:117–123. 2002. View Article : Google Scholar : PubMed/NCBI | |
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A and McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Syu SH, Liu KJ, Chu PY, Yang WC, Lin P and Shieh WY: Interleukin-1 beta transactivates epidermal growth factor receptor via the CXCL1-CXCR2 axis in oral cancer. Oncotarget. 6:38866–38880. 2015.PubMed/NCBI | |
Corless CL, Fletcher JA and Heinrich MC: Biology of gastrointestinal stromal tumors. J Clin Oncol. 22:3813–3825. 2004. View Article : Google Scholar : PubMed/NCBI | |
Javidi-Sharifi N, Traer E, Martinez J, Gupta A, Taguchi T, Dunlap J, Heinrich MC, Corless CL, Rubin BP, Druker BJ, et al: Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res. 75:880–891. 2015. View Article : Google Scholar : | |
Sharma SV, Bell DW, Settleman J and Haber DA: Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 7:169–181. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu N, Xiao H, Wang LM, Fu S, Zhao C and Huang H: Mutations in tyrosine kinase and tyrosine phosphatase and their relevance to the target therapy in hematologic malignancies. Future Oncol. 11:659–673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kraus J, Kraus M, Liu N, Besse L, Bader J, Geurink PP, de Bruin G, Kisselev AF, Overkleeft H and Driessen C: The novel β2-selective proteasome inhibitor LU-102 decreases phosphorylation of I kappa B and induces highly synergistic cytotoxicity in combination with ibrutinib in multiple myeloma cells. Cancer Chemother Pharmacol. 76:383–396. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jagarlamudi KK, Hansson LO and Eriksson S: Breast and prostate cancer patients differ significantly in their serum thymidine kinase 1 (TK1) specific activities compared with those hematological malignancies and blood donors: implications of using serum TK1 as a biomarker. BMC Cancer. 15:662015. View Article : Google Scholar : PubMed/NCBI | |
Hou S, Isaji T, Hang Q, Im S, Fukuda T and Gu J: Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Sci Rep. 6:184302016. View Article : Google Scholar | |
Paladino D, Yue P, Furuya H, Acoba J, Rosser CJ and Turkson J: A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 7:7253–7267. 2016. | |
Li Z, Lin P, Gao C, Peng C, Liu S, Gao H, Wang B, Wang J, Niu J and Niu W: Integrin β6 acts as an unfavorable prognostic indicator and promotes cellular malignant behaviors via ERK-ETS1 pathway in pancreatic ductal adenocarcinoma (PDAC). Tumour Biol. 37:5117–5131. 2016. View Article : Google Scholar | |
Meh raein-Ghom i F, Chu rch DR, Sch reiber CL, Weichmann AM, Basu HS and Wilding G: Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated AR(ser81). Genes Cancer. 6:428–444. 2015. | |
Barber TD, Vogelstein B, Kinzler KW and Velculescu VE: Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med. 351:28832004. View Article : Google Scholar : PubMed/NCBI | |
Blume-Jensen P and Hunter T: Oncogenic kinase signalling. Nature. 411:355–365. 2001. View Article : Google Scholar : PubMed/NCBI | |
Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L, Silliman N, Ptak J, Szabo S, Willson JK, et al: Colorectal cancer: mutations in a signalling pathway. Nature. 436:7922005. View Article : Google Scholar : PubMed/NCBI | |
Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C, Bignell G, Teague J, Smith R, Stevens C, et al: A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet. 37:590–592. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ludwig JA and Weinstein JN: Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 5:845–856. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rubio-Viqueira B and Hidalgo M: Targeting mTOR for cancer treatment. Adv Exp Med Biol. 587:309–327. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ and Abraham RT: Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 22:7004–7014. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dancey JE: Therapeutic targets: MTOR and related pathways. Cancer Biol Ther. 5:1065–1073. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, Czernin J and Sawyers CL: Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 12:122–127. 2006. View Article : Google Scholar | |
Ahmadian MR: Prospects for anti-ras drugs. Br J Haematol. 116:511–518. 2002. View Article : Google Scholar : PubMed/NCBI | |
Goodsell DS: The molecular perspective: the ras oncogene. Oncologist. 4:263–264. 1999.PubMed/NCBI | |
Sawyers CL: Shifting paradigms: the seeds of oncogene addiction. Nat Med. 15:1158–1161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hainaut P and Plymoth A: Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol. 25:50–51. 2013. View Article : Google Scholar | |
Gonzalez de Castro D, Clarke PA, Al-Lazikani B and Workman P: Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther. 93:252–259. 2013. View Article : Google Scholar : PubMed/NCBI | |
Druker BJ: Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin Pharmacother. 4:963–971. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stegmeier F, Warmuth M, Sellers WR and Dorsch M: Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin Pharmacol Ther. 87:543–552. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, et al: The IK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 3:772–775. 2004. View Article : Google Scholar : PubMed/NCBI | |
Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, et al: NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68:8022–8030. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, et al: BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62:6997–7000. 2002.PubMed/NCBI | |
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, et al BRIM-3 Study Group: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 364:2507–2516. 2011. View Article : Google Scholar : PubMed/NCBI | |
Young K, Minchom A and Larkin J: BRIM-1, -2 and -3 trials: improved survival with vemurafenib in metastatic melanoma patients with a BRAF(V600E) mutation. Future Oncol. 8:499–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et al: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI | |
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA, Hollaender N, et al RECORD-1 Study Group: Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 372:449–456. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abdurahman A, Anwar J, Turghun A, Niyaz M, Zhang L and Awut I: Epidermal growth factor receptor gene mutation status and its association with clinical characteristics and tumor markers in non-small-cell lung cancer patients in Northwest China. Mol Clin Oncol. 3:847–850. 2015.PubMed/NCBI | |
Ulivi P, Chiadini E, Dazzi C, Dubini A, Costantini M, Medri L, Puccetti M, Capelli L, Calistri D, Verlicchi A, et al: Nonsquamous, non-small-cell lung cancer patients who carry a double mutation of EGFR, EML4-ALK or KRAS: frequency, clinical-pathological characteristics, and response to therapy. Clin Lung Cancer. 17:384–390. 2016. View Article : Google Scholar | |
Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, et al: Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 371:1867–1876. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carvajal-Hausdorf DE, Schalper KA, Pusztai L, Psyrri A, Kalogeras KT, Kotoula V, Fountzilas G and Rimm DL: Measurement of domain-specific HER2 (ERBB2) expression may classify benefit from trastuzumab in breast cancer. J Natl Cancer Inst. 107:djv1362015. View Article : Google Scholar : PubMed/NCBI | |
Hasskarl J: Sorafenib: targeting multiple tyrosine kinases in cancer. Recent Results Cancer Res. 201:145–164. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aita Y, Ishii KA, Saito Y, Ikeda T, Kawakami Y, Shimano H, Hara H and Takekoshi K: Sunitinib inhibits catecholamine synthesis and secretion in pheochromocytoma tumor cells by blocking VEGF receptor 2 via PLC-γ-related pathways. Am J Physiol Endocrinol Metab. 303:E1006–E1014. 2012. View Article : Google Scholar : PubMed/NCBI | |
Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, et al: Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 368:1329–1338. 2006. View Article : Google Scholar : PubMed/NCBI | |
Czarnecka AM, Solarek W, Kornakiewicz A and Szczylik C: Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer. Oncol Rep. 35:1433–1442. 2016. | |
Lankheet NA, Huitema AD, Mallo H, Adriaansz S, Haanen JB, Schellens JH, Beijnen JH and Blank CU: The effect of seasonal variation and secretion of sunitinib in sweat on the development of hand-foot syndrome. Eur J Clin Pharmacol. 69:2065–2072. 2013. View Article : Google Scholar : PubMed/NCBI | |
Axelsson J, Rippe A and Rippe B: mTOR inhibition with temsirolimus causes acute increases in glomerular permeability, but inhibits the dynamic permeability actions of puromycin aminonucleoside. Am J Physiol Renal Physiol. 308:F1056–F1064. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wan X, Shen N, Mendoza A, Khanna C and Helman LJ: CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia. 8:394–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, et al: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 20:719–726. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cutillas PR: Role of phosphoproteomics in the development of personalized cancer therapies. Proteomics Clin Appl. 9:383–395. 2015. View Article : Google Scholar | |
Klempner SJ, Myers AP and Cantley LC: What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov. 3:1345–1354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Robin X, Creixell P, Radetskaya O, Santini CC, Longden J and Linding R: Personalized network-based treatments in oncology. Clin Pharmacol Ther. 94:646–650. 2013. View Article : Google Scholar : PubMed/NCBI | |
Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, Tao J, Campos AB, Rodon J, Ibrahim YH, et al: mTORC1 inhibition is required for sensitivity to PI3K110α inhibitors in PIK3CA-mutant breast cancer. Sci Transl Med. 5:196ra992013. View Article : Google Scholar | |
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, et al: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI | |
Murray BW and Miller N: Durability of kinase-directed therapies - a network perspective on response and resistance. Mol Cancer Ther. 14:1975–1984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Daub H, Specht K and Ullrich A: Strategies to overcome resistance to targeted protein kinase inhibitors. Nat Rev Drug Discov. 3:1001–1010. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yoshida T, Zhang G and Haura EB: Targeting epidermal growth factor receptor: central signaling kinase in lung cancer. Biochem Pharmacol. 80:613–623. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balius TE and Rizzo RC: Quantitative prediction of fold resistance for inhibitors of EGFR. Biochemistry. 48:8435–8448. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dixit A and Verkhivker GM: Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLOS Comput Biol. 5:e10004872009. View Article : Google Scholar : PubMed/NCBI | |
Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M and Eck MJ: The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA. 105:2070–2075. 2008. View Article : Google Scholar : PubMed/NCBI | |
Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, et al: BRAF mutation predicts sensitivity to MEK inhibition. Nature. 439:358–362. 2006. View Article : Google Scholar | |
Denis MG, Vallée A and Théoleyre S: EGFR T790M resistance mutation in non small-cell lung carcinoma. Clin Chim Acta. 444:81–85. 2015. View Article : Google Scholar : PubMed/NCBI | |
Niederst MJ and Engelman JA: Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal. 6:re62013. View Article : Google Scholar : PubMed/NCBI |