1
|
Daep CA, Muñoz-Jordán JL and Eugenin EA:
Flaviviruses, an expanding threat in public health: Focus on
dengue, West Nile, and Japanese encephalitis virus. J Neurovirol.
20:539–560. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Misra UK and Kalita J: Overview: Japanese
encephalitis. Prog Neurobiol. 91:108–120. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yun SI and Lee YM: Japanese encephalitis:
The virus and vaccines. Hum Vaccin Immunother. 10:263–279. 2014.
View Article : Google Scholar
|
4
|
Mackenzie JS, Johansen CA, Ritchie SA, van
den Hurk AF and Hall RA: Japanese encephalitis as an emerging
virus: the emergence and spread of Japanese encephalitis virus in
Australasia. Curr Top Microbiol Immunol. 267:49–73. 2002.PubMed/NCBI
|
5
|
Tsai TF: New initiatives for the control
of Japanese encephalitis by vaccination: Minutes of a WHO/CVI
meeting, Bangkok, Thailand, 13–15 October 1998. Vaccine. 18:1–25.
2000. View Article : Google Scholar
|
6
|
Solomon T and Vaughn DW: Pathogenesis and
clinical features of Japanese encephalitis and West Nile virus
infections. Curr Top microbiol Immunol. 267:171–194.
2002.PubMed/NCBI
|
7
|
Solomon T and Winter PM: Neurovirulence
and host factors in flavivirus encephalitis-evidence from clinical
epidemiology. Arch Virol Suppl. 18:161–170. 2004.
|
8
|
Campbell GL, Hills SL, Fischer M, Jacobson
JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD and
Ginsburg AS: Estimated global incidence of Japanese encephalitis: a
systematic review. Bull World Health Organ. 89:766–774. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
No authors listed. Japanese Encephalitis
Vaccines: WHO position paper - February 2015. Wkly Epidemiol Rec.
90:69–87. 2015.
|
10
|
Ding D, Hong Z, Zhao SJ, Clemens JD, Zhou
B, Wang B, Huang MS, Zeng J, Guo QH, Liu W, et al: Long-term
disability from acute childhood Japanese encephalitis in Shanghai,
China. Am J Trop Med Hyg. 77:528–533. 2007.PubMed/NCBI
|
11
|
Sumiyoshi H, Mori C, Fuke I, Morita K,
Kuhara S, Kondou J, Kikuchi Y, Nagamatu H and Igarashi A: Complete
nucleotide sequence of the Japanese encephalitis virus genome RNA.
Virology. 161:497–510. 1987. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chambers TJ, Hahn CS, Galler R and Rice
CM: Flavivirus genome organization, expression, and replication.
Annu Rev Microbiol. 44:649–688. 1990. View Article : Google Scholar : PubMed/NCBI
|
13
|
McMinn PC: The molecular basis of
virulence of the encephalitogenic flaviviruses. J Gen Virol.
78:2711–2722. 1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Winkler G, Heinz FX and Kunz C: Studies on
the glycosylation of flavivirus E proteins and the role of
carbohydrate in antigenic structure. Virology. 159:237–243. 1987.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Luca VC, AbiMansour J, Nelson CA and
Fremont DH: Crystal structure of the Japanese encephalitis virus
envelope protein. J Virol. 86:2337–2346. 2012. View Article : Google Scholar :
|
16
|
Rey FA, Heinz FX, Mandl C, Kunz C and
Harrison SC: The envelope glycoprotein from tick-borne encephalitis
virus at 2 A resolution. Nature. 375:291–298. 1995. View Article : Google Scholar : PubMed/NCBI
|
17
|
Allison SL, Schalich J, Stiasny K, Mandl
CW and Heinz FX: Mutational evidence for an internal fusion peptide
in flavivirus envelope protein E. J Virol. 75:4268–4275. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kolaskar AS and Kulkarni-Kale U:
Prediction of three-dimensional structure and mapping of
conformational epitopes of envelope glycoprotein of Japanese
encephalitis virus. Virology. 261:31–42. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu KP, Wu CW, Tsao YP, Kuo TW, Lou YC, Lin
CW, Wu SC and Cheng JW: Structural basis of a flavivirus recognized
by its neutralizing antibody: Solution structure of the domain III
of the Japanese encephalitis virus envelope protein. J Biol Chem.
278:46007–46013. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kimura T, Kimura-Kuroda J, Nagashima K and
Yasui K: Analysis of virus-cell binding characteristics on the
determination of Japanese encephalitis virus susceptibility. Arch
Virol. 139:239–251. 1994. View Article : Google Scholar : PubMed/NCBI
|
21
|
Su CM, Liao CL, Lee YL and Lin YL: Highly
sulfated forms of heparin sulfate are involved in japanese
encephalitis virus infection. Virology. 286:206–215. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu SC, Chiang JR and Lin CW: Novel cell
adhesive glycosaminoglycan-binding proteins of Japanese
encephalitis virus. Biomacromolecules. 5:2160–2164. 2004.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ren Junping LY, Wei Z, Jing Y and Chin Ma
W: Isolation and preliminary identification of 74×103 molecule as
putative Japanese encephalitis virus receptor. J Microbiol Immunol.
29:307–311. 2009.
|
24
|
Das S, Laxminarayana SV, Chandra N, Ravi V
and Desai A: Heat shock protein 70 on Neuro2a cells is a putative
receptor for Japanese encephalitis virus. Virology. 385:47–57.
2009. View Article : Google Scholar
|
25
|
Thongtan T, Wikan N, Wintachai P,
Rattanarungsan C, Srisomsap C, Cheepsunthorn P and Smith DR:
Characterization of putative Japanese encephalitis virus receptor
molecules on microglial cells. J Med Virol. 84:615–623. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chu JJ, Leong PW and Ng ML:
Characterization of plasma membrane-associated proteins from Aedes
albopictus mosquito (C6/36) cells that mediate West Nile virus
binding and infection. Virology. 339:249–260. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang MJ, Wang MX, Jiang SZ, Xiu ZZ and Ma
WY: Preparation and characterization of the monoclonal antibodies
against Japanese encephalitis virus. Acta Virol. 36:533–540.
1992.PubMed/NCBI
|
28
|
Perkins DN, Pappin DJ, Creasy DM and
Cottrell JS: Probability-based protein identification by searching
sequence databases using mass spectrometry data. Electrophoresis.
20:3551–3567. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Everett RD: Study of early events during
herpes simplex virus type 1 infection by confocal microscopy.
Methods. 55:144–152. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Henschel A, Buchholz F and Habermann B:
DEQOR: A web-based tool for the design and quality control of
siRNAs. Nucleic Acids Res. 32:Web Server. W113–20. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schulz R, Marchenko ND, Holembowski L,
Fingerle-Rowson G, Pesic M, Zender L, Dobbelstein M and Moll UM:
Inhibiting the HSP90 chaperone destabilizes macrophage migration
inhibitory factor and thereby inhibits breast tumor progression. J
Exp Med. 209:275–289. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Haywood AM: Virus receptors: Binding,
adhesion strengthening, and changes in viral structure. J Virol.
68:1–5. 1994.PubMed/NCBI
|
33
|
Salas-Benito JS and del Angel RM:
Identification of two surface proteins from C6/36 cells that bind
dengue type 4 virus. J Virol. 71:7246–7252. 1997.PubMed/NCBI
|
34
|
Martínez-Barragán JJ and del Angel RM:
Identification of a putative coreceptor on Vero cells that
participates in dengue 4 virus infection. J Virol. 75:7818–7827.
2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li W, Moore MJ, Vasilieva N, Sui J, Wong
SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough
TC, et al: Angiotensin-converting enzyme 2 is a functional receptor
for the SARS coronavirus. Nature. 426:450–454. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ding T, Zhang W, Ma W and Ren J:
Identification of a mutated BHK-21 cell line that became less
susceptible to Japanese encephalitis virus infection. Virol J.
8:1152011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Csermely P, Schnaider T, Soti C, Prohászka
Z and Nardai G: The 90-kDa molecular chaperone family: Structure,
function, and clinical applications. A comprehensive review.
Pharmacol Ther. 79:129–168. 1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Crevel G, Bates H, Huikeshoven H and
Cotterill S: The Drosophila Dpit47 protein is a nuclear Hsp90
co-chaperone that interacts with DNA polymerase alpha. J Cell Sci.
114:2015–2025. 2001.PubMed/NCBI
|
39
|
Chen B, Zhong D and Monteiro A:
Comparative genomics and evolution of the HSP90 family of genes
across all kingdoms of organisms. BMC Genomics. 7:1562006.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Thomas JG and Baneyx F: Roles of the
Escherichia coli small heat shock proteins IbpA and IbpB in thermal
stress management: Comparison with ClpA, ClpB, and HtpG In vivo. J
Bacteriol. 180:5165–5172. 1998.PubMed/NCBI
|
41
|
Chen B, Piel WH, Gui L, Bruford E and
Monteiro A: The HSP90 family of genes in the human genome: Insights
into their divergence and evolution. Genomics. 86:627–637. 2005.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Correia AL, Mori H, Chen EI, Schmitt FC
and Bissell MJ: The hemopexin domain of MMP3 is responsible for
mammary epithelial invasion and morphogenesis through extracellular
interaction with HSP90β. Genes Dev. 27:805–817. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T
and Yokoyama K: Mechanism of dimer formation of the 90-kDa
heat-shock protein. Eur J Biochem. 233:1–8. 1995. View Article : Google Scholar : PubMed/NCBI
|
44
|
Barginear MF, Van Poznak C, Rosen N, Modi
S, Hudis CA and Budman DR: The heat shock protein 90 chaperone
complex: An evolving therapeutic target. Curr Cancer Drug Targets.
8:522–532. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kobayakawa T, Yamada S, Mizuno A and
Nemoto TK: Substitution of only two residues of human Hsp90alpha
causes impeded dimerization of Hsp90beta. Cell Stress Chaperones.
13:97–104. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ochel HJ, Eichhorn K and Gademann G:
Geldanamycin: the prototype of a class of antitumor drugs targeting
the heat shock protein 90 family of molecular chaperones. Cell
Stress Chaperones. 6:105–112. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kamal A, Thao L, Sensintaffar J, Zhang L,
Boehm MF, Fritz LC and Burrows FJ: A high-affinity conformation of
Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature.
425:407–410. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sato S, Fujita N and Tsuruo T: Modulation
of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA.
97:10832–10837. 2000. View Article : Google Scholar : PubMed/NCBI
|
49
|
Fontana J, Fulton D, Chen Y, Fairchild TA,
McCabe TJ, Fujita N, Tsuruo T and Sessa WC: Domain mapping studies
reveal that the M domain of hsp90 serves as a molecular scaffold to
regulate Akt-dependent phosphorylation of endothelial nitric oxide
synthase and NO release. Circ Res. 90:866–873. 2002. View Article : Google Scholar : PubMed/NCBI
|
50
|
Söti C, Rácz A and Csermely P: A
Nucleotide-dependent molecular switch controls ATP binding at the
C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a
C-terminal binding pocket. J Biol Chem. 277:7066–7075. 2002.
View Article : Google Scholar
|
51
|
Young JC, Obermann WM and Hartl FU:
Specific binding of tetratricopeptide repeat proteins to the
C-terminal 12-kDa domain of hsp90. J Biol Chem. 273:18007–18010.
1998. View Article : Google Scholar : PubMed/NCBI
|
52
|
Pearl LH and Prodromou C: Structure,
function, and mechanism of the Hsp90 molecular chaperone. Adv
Protein Chem. 59:157–186. 2001. View Article : Google Scholar
|
53
|
Wandinger SK, Richter K and Buchner J: The
Hsp90 chaperone machinery. J Biol Chem. 283:18473–18477. 2008.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Daugaard M, Rohde M and Jäättelä M: The
heat shock protein 70 family: Highly homologous proteins with
overlapping and distinct functions. FEBS Lett. 581:3702–3710. 2007.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Loones MT, Chang Y and Morange M: The
distribution of heat shock proteins in the nervous system of the
unstressed mouse embryo suggests a role in neuronal and
non-neuronal differentiation. Cell Stress Chaperones. 5:291–305.
2000. View Article : Google Scholar : PubMed/NCBI
|
56
|
Hung CY, Tsai MC, Wu YP and Wang RY:
Identification of heat-shock protein 90 beta in Japanese
encephalitis virus-induced secretion proteins. J Gen Virol.
92:2803–2809. 2011. View Article : Google Scholar : PubMed/NCBI
|
57
|
Wang RY, Kuo RL, Ma WC, Huang HI, Yu JS,
Yen SM, Huang CR and Shih SR: Heat shock protein-90-beta
facilitates enterovirus 71 viral particles assembly. Virology.
443:236–247. 2013. View Article : Google Scholar : PubMed/NCBI
|