1
|
Deneke SM and Fanburg BL: Regulation of
cellular glutathione. Am J Physiol. 257:L163–L173. 1989.PubMed/NCBI
|
2
|
Brigelius-Flohé R and Maiorino M:
Glutathione peroxidases. Biochim Biophys Acta. 1830:3289–3303.
2013. View Article : Google Scholar
|
3
|
Olson GE, Whitin JC, Hill KE, Winfrey VP,
Motley AK, Austin LM, Deal J, Cohen HJ and Burk RF: Extracellular
glutathione peroxidase (Gpx3) binds specifically to basement
membranes of mouse renal cortex tubule cells. Am J Physiol Renal
Physiol. 298:F1244–F1253. 2010. View Article : Google Scholar :
|
4
|
Li YG, Ji DF, Zhong S, Shi LG, Hu GY and
Chen S: Saponins from Panax japonicus protect against
alcohol-induced hepatic injury in mice by upregulating the
expression of GPX3, SOD1 and SOD3. Alcohol Alcohol. 45:320–331.
2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rush JW and Sandiford SD: Plasma
glutathione peroxidase in healthy young adults: Influence of gender
and physical activity. Clin Biochem. 36:345–351. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nelson SD: Molecular mechanisms of the
hepatotoxicity caused by acetaminophen. Semin Liver Dis.
10:267–278. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dai G, He L, Chou N and Wan YJ:
Acetaminophen metabolism does not contribute to gender difference
in its hepatotoxicity in mouse. Toxicol Sci. 92:33–41. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sheng Y, Liang Q, Deng Z, Ji L and Wang Z:
Acetaminophen induced gender-dependent liver injury and the
involvement of GCL and GPx. Drug Discov Ther. 7:78–83.
2013.PubMed/NCBI
|
9
|
Botta D, Shi S, White CC, Dabrowski MJ,
Keener CL, Srinouanprachanh SL, Farin FM, Ware CB, Ladiges WC,
Pierce RH, et al: Acetaminophen-induced liver injury is attenuated
in male glutamate-cysteine ligase transgenic mice. J Biol Chem.
281:28865–28875. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
McConnachie LA, Mohar I, Hudson FN, Ware
CB, Ladiges WC, Fernandez C, Chatterton-Kirchmeier S, White CC,
Pierce RH and Kavanagh TJ: Glutamate cysteine ligase modifier
subunit deficiency and gender as determinants of
acetaminophen-induced hepatotoxicity in mice. Toxicol Sci.
99:628–636. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Masubuchi Y, Nakayama J and Watanabe Y:
Sex difference in susceptibility to acetaminophen hepatotoxicity is
reversed by buthionine sulfoximine. Toxicology. 287:54–60. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Du K, Williams CD, McGill MR and Jaeschke
H: Lower susceptibility of female mice to acetaminophen
hepatotoxicity: Role of mitochondrial glutathione, oxidant stress
and c-jun N-terminal kinase. Toxicol Appl Pharmacol. 281:58–66.
2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mirochnitchenko O, Weisbrot-Lefkowitz M,
Reuhl K, Chen L, Yang C and Inouye M: Acetaminophen toxicity.
Opposite effects of two forms of glutathione peroxidase. J Biol
Chem. 274:10349–10355. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kanno S, Tomizawa A and Yomogida S:
Detecting mRNA Predictors of acetaminophen-induced hepatotoxicity
in mouse blood using quantitative real-time PCR. Biol Pharm Bull.
39:440–445. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chandrasekaran VR, Periasamy S, Liu LL and
Liu MY: 17β-Estradiol protects against
acetaminophen-overdose-induced acute oxidative hepatic damage and
increases the survival rate in mice. Steroids. 76:118–124. 2011.
View Article : Google Scholar
|
16
|
Baltgalvis KA, Greising SM, Warren GL and
Lowe DA: Estrogen regulates estrogen receptors and antioxidant gene
expression in mouse skeletal muscle. PLoS One. 5:e101642010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kanno S, Ishikawa M, Takayanagi M,
Takayanagi Y and Sasaki K: Potentiation of acetaminophen
hepatotoxicity and mortality by doxapram in mice. Biol Pharm Bull.
21:934–937. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kanno S, Tomizawa A, Hiura T, Osanai Y,
Kakuta M, Kitajima Y, Koiwai K, Ohtake T, Ujibe M and Ishikawa M:
Melatonin protects on toxicity by acetaminophen but not on
pharmacological effects in mice. Biol Pharm Bull. 29:472–476. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hori Y, Iwasaki Y, Kuroki Y, Komiyayama Y,
Nakatani H and Namera A: Practical analysis of toxic substances
useful for clinical toxicology–4–Acetaminophen. Chudoku Kenkyu.
15:385–390. 2002.
|
20
|
Berridge MV, Herst PM and Tan AS:
Tetrazolium dyes as tools in cell biology: New insights into their
cellular reduction. Biotechnol Annu Rev. 11:127–152. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kanno S, Kurauchi K, Tomizawa A, Yomogida
S and Ishikawa M: Pifithrin-alpha has a p53-independent
cytoprotective effect on docosahexaenoic acid-induced cytotoxicity
in human hepatocellular carcinoma HepG2 cells. Toxicol Lett.
232:393–402. 2015. View Article : Google Scholar
|
22
|
Huh K, Shin US, Choi JW and Lee SI: Effect
of sex hormones on lipid peroxidation in rat liver. Arch Pharm Res.
17:109–114. 1994. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gómez-Zubeldia MA, Hernandez R, Viguera J,
Arbues JJ, Aparicio A and Millán JC: Effect of bilateral
ovariectomy and ovarian steroid hormones on the antioxidant systems
and plasma malondialdehyde levels in Wistar rats. Endocr Res.
26:97–107. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kumar S, Lata K, Mukhopadhyay S and
Mukherjee TK: Role of estrogen receptors in pro-oxidative and
anti-oxidative actions of estrogens: A perspective. Biochim Biophys
Acta. 1800:1127–1135. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sugioka K, Shimosegawa Y and Nakano M:
Estrogens as natural antioxidants of membrane phospholipid
peroxidation. FEBS Lett. 210:37–39. 1987. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ruiz-Larrea MB, Leal AM, Martín C,
Martínez R and Lacort M: Antioxidant action of estrogens in rat
hepatocytes. Rev Esp Fisiol. 53:225–229. 1997.PubMed/NCBI
|
27
|
Borrás C, Gambini J, Gómez-Cabrera MC,
Sastre J, Pallardó FV, Mann GE and Viña J: 17beta-oestradiol
up-regulates longevity- related, antioxidant enzyme expression via
the ERK1 and ERK2[MAPK]/NFkappaB cascade. Aging Cell. 4:113–118.
2005. View Article : Google Scholar
|
28
|
Priyanka HP, Krishnan HC, Singh RV, Hima L
and Thyagarajan S: Estrogen modulates in vitro T cell responses in
a concentration- and receptor-dependent manner: Effects on
intracellular molecular targets and antioxidant enzymes. Mol
Immunol. 56:328–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Michiels C, Raes M, Toussaint O and
Remacle J: Importance of Se-glutathione peroxidase, catalase, and
Cu/Zn-SOD for cell survival against oxidative stress. Free Radic
Biol Med. 17:235–248. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Barrett CW, Ning W, Chen X, Smith JJ,
Washington MK, Hill KE, Coburn LA, Peek RM, Chaturvedi R, Wilson
KT, et al: Tumor suppressor function of the plasma glutathione
peroxidase gpx3 in colitis-associated carcinoma. Cancer Res.
73:1245–1255. 2013. View Article : Google Scholar :
|
31
|
He Y, Wang Y, Li P, Zhu S, Wang J and
Zhang S: Identification of GPX3 epigenetically silenced by CpG
methylation in human esophageal squamous cell carcinoma. Dig Dis
Sci. 56:681–688. 2011. View Article : Google Scholar
|
32
|
Peng DF, Razvi M, Chen H, Washington K,
Roessner A, Schneider-Stock R and El-Rifai W: DNA hypermethylation
regulates the expression of members of the Mu-class glutathione
S-transferases and glutathione peroxidases in Barrett's
adenocarcinoma. Gut. 58:5–15. 2009. View Article : Google Scholar
|
33
|
Murawaki Y, Tsuchiya H, Kanbe T, Harada K,
Yashima K, Nozaka K, Tanida O, Kohno M, Mukoyama T, Nishimuki E, et
al: Aberrant expression of selenoproteins in the progression of
colorectal cancer. Cancer Lett. 259:218–230. 2008. View Article : Google Scholar
|
34
|
Qi X, Ng KT, Lian QZ, Liu XB, Li CX, Geng
W, Ling CC, Ma YY, Yeung WH, Tu WW, et al: Clinical significance
and therapeutic value of glutathione peroxidase 3 (GPx3) in
hepatocellular carcinoma. Oncotarget. 5:11103–11120. 2014.
View Article : Google Scholar : PubMed/NCBI
|