1
|
Place ES, Evans ND and Stevens MM:
Complexity in biomaterials for tissue engineering. Nat Mater.
8:457–470. 2009. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Owen SC and Shoichet MS: Design of
three-dimensional biomimetic scaffolds. J Biomed Mater Res A.
94:1321–1331. 2010.PubMed/NCBI
|
3
|
Oh JK: Engineering of nanometer-sized
cross-linked hydrogels for biomedical applications. Can J Chem.
88:173–184. 2009. View
Article : Google Scholar
|
4
|
Lutolf MP: Biomaterials: Spotlight on
hydrogels. Nat Mater. 8:451–453. 2009. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Zhu J: Bioactive modification of
poly(ethylene glycol) hydrogels for tissue engineering.
Biomaterials. 31:4639–4656. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Geckil H, Xu F, Zhang X, Moon S and
Demirci U: Engineering hydrogels as extracellular matrix mimics.
Nanomedicine (Lond). 5:469–484. 2010. View Article : Google Scholar
|
7
|
Liu SQ, Tay R, Khan M, Rachel Ee PL,
Hedrick JL and Yang YY: Synthetic hydrogels for controlled stem
cell differentiation. Soft Matter. 6:67–81. 2010. View Article : Google Scholar
|
8
|
Hosseinkhani H, Hosseinkhani M, Tian F,
Kobayashi H and Tabata Y: Osteogenic differentiation of mesenchymal
stem cells in self-assembled peptide-amphiphile nanofibers.
Biomaterials. 27:4079–4086. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cunha C, Panseri S, Villa O, Silva D and
Gelain F: 3D culture of adult mouse neural stem cells within
functionalized self-assembling peptide scaffolds. Int J
Nanomedicine. 6:943–955. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Saltzman WM and Olbricht WL: Building drug
delivery into tissue engineering. Nat Rev Drug Discov. 1:177–186.
2002. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Kretlow JD, Klouda L and Mikos AG:
Injectable matrices and scaffolds for drug delivery in tissue
engineering. Adv Drug Deliv Rev. 59:263–273. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tan H and Marra KG: Injectable,
biodegradable hydrogels for tissue engineering applications.
Materials (Basel). 3:1746–1767. 2010. View Article : Google Scholar
|
13
|
Zhang S: Fabrication of novel biomaterials
through molecular self-assembly. Nat Biotechnol. 21:1171–1178.
2003. View
Article : Google Scholar : PubMed/NCBI
|
14
|
He B, Yuan X and Jiang D: Molecular
self-assembly guides the fabrication of peptide nanofiber scaffolds
for nerve repair. RSC Advances. 4:23610–23621. 2014. View Article : Google Scholar
|
15
|
Zhang S, Holmes T, Lockshin C and Rich A:
Spontaneous assembly of a self-complementary oligopeptide to form a
stable macroscopic membrane. Proc Natl Acad Sci USA. 90:3334–3338.
1993. View Article : Google Scholar : PubMed/NCBI
|
16
|
Holmes TC, de Lacalle S, Su X, Liu G, Rich
A and Zhang S: Extensive neurite outgrowth and active synapse
formation on self-assembling peptide scaffolds. Proc Natl Acad Sci
USA. 97:6728–6733. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hamada K, Hirose M, Yamashita T and
Ohgushi H: Spatial distribution of mineralized bone matrix produced
by marrow mesenchymal stem cells in self-assembling peptide
hydrogel scaffold. J Biomed Mater Res A. 84:128–136. 2008.
View Article : Google Scholar
|
18
|
Horii A, Wang X, Gelain F and Zhang S:
Biological designer self-assembling peptide nanofiber scaffolds
significantly enhance osteoblast proliferation, differentiation and
3-D migration. PLoS One. 2:e1902007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Koutsopoulos S and Zhang S: Long-term
three-dimensional neural tissue cultures in functionalized
self-assembling peptide hydrogels, matrigel and collagen I. Acta
Biomater. 9:5162–5169. 2013. View Article : Google Scholar
|
20
|
Liu X, Wang X, Wang X, Ren H, He J, Qiao L
and Cui FZ: Functionalized self-assembling peptide nanofiber
hydrogels mimic stem cell niche to control human adipose stem cell
behavior in vitro. Acta Biomater. 9:6798–6805. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bradshaw M, Ho D, Fear MW, Gelain F, Wood
FM and Iyer KS: Designer self-assembling hydrogel scaffolds can
impact skin cell proliferation and migration. Sci Rep. 4:69032014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang B, Sun C, Shao Z, Yang S, Che B, Wu Q
and Liu J: Designer self-assembling peptide nanofiber scaffolds
containing link protein N-terminal peptide induce chondrogenesis of
rabbit bone marrow stem cells. Biomed Res Int. 2014:4219542014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kisiday J, Jin M, Kurz B, Hung H, Semino
C, Zhang S and Grodzinsky AJ: Self-assembling peptide hydrogel
fosters chondrocyte extracellular matrix production and cell
division: Implications for cartilage tissue repair. Proc Natl Acad
Sci USA. 99:9996–10001. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Davis ME, Motion JPM, Narmoneva DA,
Takahashi T, Hakuno D, Kamm RD, Zhang S and Lee RT: Injectable
self-assembling peptide nanofibers create intramyocardial
microenvironments for endothelial cells. Circulation. 111:442–450.
2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang B, Wu Y, Shao Z, Yang S, Che B, Sun
C, Ma Z and Zhang Y: Functionalized self-assembling peptide
nanofiber hydrogel as a scaffold for rabbit nucleus pulposus cells.
J Biomed Mater Res A. 100:646–653. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu X, Wang X, Horii A, Wang X, Qiao L,
Zhang S and Cui FZ: In vivo studies on angiogenic activity of two
designer self-assembling peptide scaffold hydrogels in the chicken
embryo chorioallantoic membrane. Nanoscale. 4:2720–2727. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Soler-Botija C, Bagó JR,
Llucià-Valldeperas A, Vallés-Lluch A, Castells-Sala C,
Martínez-Ramos C, Fernández-Muiños T, Chachques JC, Pradas MM,
Semino CE, et al: Engineered 3D bioimplants using elastomeric
scaffold, self-assembling peptide hydrogel, and adipose
tissue-derived progenitor cells for cardiac regeneration. Am J
Transl Res. 6:291–301. 2014.PubMed/NCBI
|
28
|
Wu M, Ye Z, Zhu H and Zhao X:
Self-assembling peptide nanofibrous hydrogel on immediate
hemostasis and accelerative osteosis. Biomacromolecules.
16:3112–3118. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li X, Du X, Li J, Gao Y, Pan Y, Shi J,
Zhou N and Xu B: Introducing D-amino acid or simple glycoside into
small peptides to enable supramolecular hydrogelators to resist
proteolysis. Langmuir. 28:13512–13517. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tugyi R, Uray K, Iván D, Fellinger E,
Perkins A and Hudecz F: Partial D-amino acid substitution: Improved
enzymatic stability and preserved Ab recognition of a MUC2 epitope
peptide. Proc Natl Acad Sci USA. 102:413–418. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Welch BD, VanDemark AP, Heroux A, Hill CP
and Kay MS: Potent D-peptide inhibitors of HIV-1 entry. Proc Natl
Acad Sci USA. 104:16828–16833. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liang G, Yang Z, Zhang R, Li L, Fan Y,
Kuang Y, Gao Y, Wang T, Lu WW and Xu B: Supramolecular hydrogel of
a D-amino acid dipeptide for controlled drug release in vivo.
Langmuir. 25:8419–8422. 2009. View Article : Google Scholar
|
33
|
Lennon DP, Haynesworth SE, Young RG,
Dennis JE and Caplan AI: A chemically defined medium supports in
vitro proliferation and maintains the osteochondral potential of
rat marrow-derived mesenchymal stem cells. Exp Cell Res.
219:211–222. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yokoi H, Kinoshita T and Zhang S: Dynamic
reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci
USA. 102:8414–8419. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hauser CAE and Zhang S: Designer
self-assembling peptide nanofiber biological materials. Chem Soc
Rev. 39:2780–2790. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tang C, Shao X, Sun B, Huang W and Zhao X:
The effect of self-assembling peptide RADA16-I on the growth of
human leukemia cells in vitro and in nude mice. Int J Mol Sci.
10:2136–2145. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nune M, Kumaraswamy P, Krishnan UM and
Sethuraman S: Self-assembling peptide nanofibrous scaffolds for
tissue engineering: Novel approaches and strategies for effective
functional regeneration. Curr Protein Pept Sci. 14:70–84. 2013.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Tavakol S, Saber R, Hoveizi E, Aligholi H,
Ai J and Rezayat SM: Chimeric self-assembling nanofiber containing
bone marrow homing peptide's motif induces motor neuron recovery in
animal model of chronic spinal cord injury; An in vitro and in vivo
investigation. Mol Neurobiol. 53:3298–3308. 2016. View Article : Google Scholar
|
39
|
Taraballi F, Campione M, Sassella A,
Vescovi A, Paleari A, Hwangc W and Gelain F: Effect of
functionalization on the self-assembling propensity of β-sheet
forming peptides. Soft Matter. 5:660–668. 2009. View Article : Google Scholar
|
40
|
Cormier AR, Pang X, Zimmerman MI, Zhou HX
and Paravastu AK: Molecular structure of RADA16-I designer
self-assembling peptide nanofibers. ACS Nano. 7:7562–7572. 2013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Ravichandran R, Griffith M and Phopase J:
Applications of self-assembling peptide scaffolds in regenerative
medicine: The way to the clinic. J Mater Chem B Mater Biol Med.
2:8466–8478. 2014. View Article : Google Scholar
|
42
|
Luo Z, Yue Y, Zhang Y, Yuan X, Gong J,
Wang L, He B, Liu Z, Sun Y, Liu J, et al: Designer D-form
self-assembling peptide nanofiber scaffolds for 3-dimensional cell
cultures. Biomaterials. 34:4902–4913. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Anderson JM, Patterson JL, Vines JB, Javed
A, Gilbert SR and Jun HW: Biphasic peptide amphiphile nanomatrix
embedded with hydroxyapatite nanoparticles for stimulated
osteoinductive response. ACS Nano. 5:9463–9479. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hosseinkhani H, Hong PD and Yu DS:
Self-assembled proteins and peptides for regenerative medicine.
Chem Rev. 113:4837–4861. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Friedman M: Chemistry, nutrition, and
microbiology of D-amino acids. J Agric Food Chem. 47:3457–3479.
1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bergmeister H, Schreiber C, Grasl C,
Walter I, Plasenzotti R, Stoiber M, Bernhard D and Schima H:
Healing characteristics of electrospun polyurethane grafts with
various porosities. Acta Biomater. 9:6032–6040. 2013. View Article : Google Scholar
|
48
|
Zhang F, Shi GS, Ren LF, Hu FQ, Li SL and
Xie ZJ: Designer self-assembling peptide scaffold stimulates
pre-osteoblast attachment, spreading and proliferation. J Mater Sci
Mater Med. 20:1475–1481. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ozeki M, Kuroda S, Kon K and Kasugai S:
Differentiation of bone marrow stromal cells into osteoblasts in a
self-assembling peptide hydrogel: In vitro and in vivo studies. J
Biomater Appl. 25:663–684. 2011. View Article : Google Scholar
|
50
|
Ni N, Hu Y, Ren H, Luo C, Li P, Wan JB and
Su H: Self-assembling peptide nanofiber scaffolds enhance
dopaminergic differentiation of mouse pluripotent stem cells in
3-dimensional culture. PLoS One. 8:e845042013. View Article : Google Scholar :
|
51
|
Lu T, Chen T, Zhai Y, Ma Y and Xiao Y:
Designer functionalized self-assembling peptide scaffolds for
adhesion, proliferation, and differentiation of MC3T3-E1. Soft
Mater. 12:79–87. 2013. View Article : Google Scholar
|
52
|
Nagy KJ, Giano MC, Jin A, Pochan DJ and
Schneider JP: Enhanced mechanical rigidity of hydrogels formed from
enantiomeric peptide assemblies. J Am Chem Soc. 133:14975–14977.
2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Luo Z, Zhao X and Zhang S:
Self-organization of a chiral D-EAK16 designer peptide into a 3D
nanofiber scaffold. Macromol Biosci. 8:785–791. 2008. View Article : Google Scholar : PubMed/NCBI
|