1
|
Chan JC, Malik V, Jia W, Kadowaki T,
Yajnik CS, Yoon KH and Hu FB: Diabetes in Asia: Epidemiology, risk
factors, and pathophysiology. JAMA. 301:2129–2140. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liang H, Tantiwong P, Sriwijitkamol A,
Shanmugasundaram K, Mohan S, Espinoza S, Defronzo RA, Dubé JJ and
Musi N: Effect of a sustained reduction in plasma free fatty acid
concentration on insulin signalling and inflammation in skeletal
muscle from human subjects. J Physiol. 591:2897–2909. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Daniele G, Eldor R, Merovci A, Clarke GD,
Xiong J, Tripathy D, Taranova A, Abdul-Ghani M and DeFronzo RA:
Chronic reduction of plasma free fatty acid improves mitochondrial
function and whole-body insulin sensitivity in obese and type 2
diabetic individuals. Diabetes. 63:2812–2820. 2014. View Article : Google Scholar :
|
4
|
Belfort R, Mandarino L, Kashyap S, Wirfel
K, Pratipanawatr T, Berria R, Defronzo RA and Cusi K: Dose-response
effect of elevated plasma free fatty acid on insulin signaling.
Diabetes. 54:1640–1648. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ayvaz G, Balos Törüner F, Karakoç A,
Yetkin I, Cakir N and Arslan M: Acute and chronic effects of
different concentrations of free fatty acids on the insulin
secreting function of islets. Diabetes Metab. 28:3S7–3S112.
2002.
|
6
|
Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi
M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, et al:
Saturated fatty acid and TLR signaling link β cell dysfunction and
islet inflammation. Cell Metab. 15:518–533. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kharroubi I, Ladrière L, Cardozo AK,
Dogusan Z, Cnop M and Eizirik DL: Free fatty acids and cytokines
induce pancreatic beta-cell apoptosis by different mechanisms: Role
of nuclear factor-kappaB and endoplasmic reticulum stress.
Endocrinology. 145:5087–5096. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang Y, Tong Y, Gong M, Lu Y, Wang C, Zhou
M, Yang Q, Mao T and Tong N: Activation of PPARβ/δ protects
pancreatic β cells from palmitate-induced apoptosis by upregulating
the expression of GLP-1 receptor. Cell Signal. 26:268–278. 2014.
View Article : Google Scholar
|
9
|
Sun Y, Ren M, Gao GQ, Gong B, Xin W, Guo
H, Zhang XJ, Gao L and Zhao JJ: Chronic palmitate exposure inhibits
AMPKalpha and decreases glucose-stimulated insulin secretion from
beta-cells: Modulation by fenofibrate. Acta Pharmacol Sin.
29:443–450. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ritz-Laser B, Meda P, Constant I, Klages
N, Charollais A, Morales A, Magnan C, Ktorza A and Philippe J:
Glucose-induced preproinsulin gene expression is inhibited by the
free fatty acid palmitate. Endocrinology. 140:4005–4014. 1999.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Del Guerra S, Bugliani M, D'Aleo V, Del
Prato S, Boggi U, Mosca F, Filipponi F and Lupi R:
G-protein-coupled receptor 40 (GPR40) expression and its regulation
in human pancreatic islets: The role of type 2 diabetes and fatty
acids. Nutr Metab Cardiovasc Dis. 20:22–25. 2010. View Article : Google Scholar
|
12
|
Chen P, Cao Y, Bao B, Zhang L and Ding A:
Antioxidant capacity of Typha angustifolia extracts and two active
flavonoids. Pharm Biol. 55:1283–1288. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cao S, Ni B, Feng L, Yin X, Dou H, Fu J,
Lin L and Ni J: Simultaneous determination of typhaneoside and
isorhamnetin-3-O-neohesperidoside in rats after oral administration
of Pollen Typhae extract by UPLC-MS/MS. J Chromatogr Sci.
53:866–871. 2015. View Article : Google Scholar
|
14
|
Ohkura N, Tamura K, Tanaka A, Matsuda J
and Atsumi G: Experimental study on the hemostatc activity of
Pollen Typhae: A traditional folk medicine used by external and
oral application. Blood Coagul Fibrinolysis. 22:631–636. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao J, Zhang CY, Xu DM, Huang GQ, Xu YL,
Wang ZY, Fang SD, Chen Y and Gu YL: The antiatherogenic effects of
components isolated from pollen typhae. Thromb Res. 57:957–966.
1990. View Article : Google Scholar : PubMed/NCBI
|
16
|
Feng XT, Wang TZ, Chen Y, Liu JB, Liu Y
and Wang WJ: Pollen Typhae total flavone improves insulin-induced
glucose uptake through the β-arrestin-2-mediated signaling in C2C12
myotubes. Int J Mol Med. 30:914–922. 2012.PubMed/NCBI
|
17
|
Feng XT, Chen Q, Xie Z, Liang X, Jiang ZH,
Zhao W and Leng J: Pollen Typhae total flavone improves insulin
resistance in high-fat diet and low-dose streptozotocin-induced
type 2 diabetic rats. Biosci Biotechnol Biochem. 78:1738–1742.
2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Feng XT, Wang TZ, Leng J, Chen Y, Liu JB,
Liu Y and Wang WJ: Palmitate contributes to insulin resistance
through down-regulation of the Src-mediated phosphorylation of Akt
in C2C12 myotubes. Biosci Biotechnol Biochem. 76:1356–1361. 2012.
View Article : Google Scholar
|
19
|
Feng XT, Zhai LN, Wang CL, Zhao W, Chen Q
and Huang XQ: Effects of Pollen Typhae total flavone on
β-arrestin-2/Src/Akt signaling in adipose tissues of type 2
diabetic rats. Afr J Tradit Complement Altern Med. 12:74–78. 2015.
View Article : Google Scholar
|
20
|
Borg J, Klint C, Wierup N, Ström K,
Larsson S, Sundler F, Lupi R, Marchetti P, Xu G, Kimmel A, et al:
Perilipin is present in islets of Langerhans and protects against
lipotoxicity when overexpressed in the beta-cell line INS-1.
Endocrinology. 150:3049–3057. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bas AL, Demirci S, Yazihan N, Uney K and
Ermis Kaya E: Nerium oleander distillate improves fat and glucose
metabolism in high-fat diet-fed streptozotocin-induced diabetic
rats. Int J Endocrinol. 2012:9471872012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yaluri N, Modi S, López Rodríguez M,
Stančáková A, Kuusisto J, Kokkola T and Laakso M: Simvastatin
impairs insulin secretion by multiple mechanisms in MIN6 cells.
PLoS One. 10:e01429022015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Graciano MF, Valle MM, Curi R and
Carpinelli AR: Evidence for the involvement of GPR40 and NADPH
oxidase in palmitic acid-induced superoxide production and insulin
secretion. Islets. 5:139–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fujiwara K, Maekawa F and Yada T: Oleic
acid interacts with GPR40 to induce Ca2+ signaling in
rat islet beta-cells: Mediation by PLC and L-type Ca2+
channel and link to insulin release. Am J Physiol Endocrinol Metab.
289:E670–E677. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Barlow J, Jensen VH, Jastroch M and
Affourtit C: Palmitate-induced impairment of glucose-stimulated
insulin secretion precedes mitochondrial dysfunction in mouse
pancreatic islets. Biochem J. 473:487–496. 2016. View Article : Google Scholar
|
26
|
Zheng S, Zhou H, Han T, Li Y, Zhang Y, Liu
W and Hu Y: Clinical characteristics and beta cell function in
Chinese patients with newly diagnosed type 2 diabetes mellitus with
different levels of serum triglyceride. BMC Endocr Disord.
15:212015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kristinsson H, Smith DM, Bergsten P and
Sargsyan E: FFAR1 is involved in both the acute and chronic effects
of palmitate on insulin secretion. Endocrinology. 154:4078–4088.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yashiro H, Tsujihata Y, Takeuchi K, Hazama
M, Johnson PR and Rorsman P: The effects of TAK-875, a selective G
protein-coupled receptor 40/free fatty acid 1 agonist, on insulin
and glucagon secretion in isolated rat and human islets. J
Pharmacol Exp Ther. 340:483–489. 2012. View Article : Google Scholar
|
29
|
Meidute Abaraviciene S, Muhammed SJ,
Amisten S, Lundquist I and Salehi A: GPR40 protein levels are
crucial to the regulation of stimulated hormone secretion in
pancreatic islets. Lessons from spontaneous obesity-prone and
non-obese type 2 diabetes in rats. Mol Cell Endocrinol.
381:150–159. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Alquier T, Peyot ML, Latour MG, Kebede M,
Sorensen CM, Gesta S, Ronald Kahn C, Smith RD, Jetton TL, Metz TO,
et al: Deletion of GPR40 impairs glucose-induced insulin secretion
in vivo in mice without affecting intracellular fuel metabolism in
islets. Diabetes. 58:2607–2615. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ferdaoussi M, Bergeron V, Zarrouki B,
Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T,
MacDonald PE, et al: G protein-coupled receptor (GPR)40-dependent
potentiation of insulin secretion in mouse islets is mediated by
protein kinase D1. Diabetologia. 55:2682–2692. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nagasumi K, Esaki R, Iwachidow K, Yasuhara
Y, Ogi K, Tanaka H, Nakata M, Yano T, Shimakawa K, Taketomi S, et
al: Overexpression of GPR40 in pancreatic β-cells augments
glucose-stimulated insulin secretion and improves glucose tolerance
in normal and diabetic mice. Diabetes. 58:1067–1076. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen C, Li H and Long YQ: GPR40 agonists
for the treatment of type 2 diabetes mellitus: The biological
characteristics and the chemical space. Bioorg Med Chem Lett.
26:5603–5612. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Feng XT, Leng J, Xie Z, Li SL, Zhao W and
Tang QL: GPR40: A therapeutic target for mediating insulin
secretion (Review). Int J Mol Med. 30:1261–1266. 2012.PubMed/NCBI
|
35
|
Kim HS, Hwang YC, Koo SH, Park KS, Lee MS,
Kim KW and Lee MK: PPAR-γ activation increases insulin secretion
through the up-regulation of the free fatty acid receptor GPR40 in
pancreatic β-cells. PLoS One. 8:e501282013. View Article : Google Scholar
|
36
|
Straub SG and Sharp GW: Massive
augmentation of stimulated insulin secretion induced by fatty
acid-free BSA in rat pancreatic islets. Diabetes. 53:3152–3158.
2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schnell S, Schaefer M and Schöfl C: Free
fatty acids increase cytosolic free calcium and stimulate insulin
secretion from beta-cells through activation of GPR40. Mol Cell
Endocrinol. 263:173–180. 2007. View Article : Google Scholar
|
38
|
Sakuma K, Yabuki C, Maruyama M, Abiru A,
Komatsu H, Negoro N, Tsujihata Y, Takeuchi K, Habata Y and Mori M:
Fasiglifam (TAK-875) has dual potentiating mechanisms via
Gαq-GPR40/FFAR1 signaling branches on glucose-dependent insulin
secretion. Pharmacol Res Perspect. 4:e002372016. View Article : Google Scholar
|
39
|
Yamada H, Yoshida M, Ito K, Dezaki K, Yada
T, Ishikawa SE and Kakei M: Potentiation of glucose-stimulated
insulin secretion by the GPR40-PLC-TRPC pathway in pancreatic
β-cells. Sci Rep. 6:259122016. View Article : Google Scholar
|
40
|
Shigeto M, Cha CY, Rorsman P and Kaku K: A
role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin
secretion. J Mol Med (Berl). 95:361–368. 2017. View Article : Google Scholar
|
41
|
Zheng J, Zhao Y, Lun Q, Song Y, Shi S, Gu
X, Pan B, Qu C, Li J and Tu P: Corydalis edulis Maxim. promotes
insulin secretion via the activation of protein kinase Cs (PKCs) in
mice and pancreatic β cells. Sci Rep. 7:404542017. View Article : Google Scholar
|
42
|
Zhang X, Bao Y, Ke L and Yu Y: Elevated
circulating free fatty acids levels causing pancreatic islet cell
dysfunction through oxidative stress. J Endocrinol Invest.
33:388–394. 2010. View Article : Google Scholar
|
43
|
Piro S, Rabuazzo AM, Renis M and Purrello
F: Effects of metformin on oxidative stress, adenine nucleotides
balance, and glucose-induced insulin release impaired by chronic
free fatty acids exposure in rat pancreatic islets. J Endocrinol
Invest. 35:504–510. 2012.
|
44
|
Yin J, Peng Y, Wu J, Wang Y and Yao L:
Toll-like receptor 2/4 links to free fatty acid-induced
inflammation and β-cell dysfunction. J Leukoc Biol. 95:47–52. 2014.
View Article : Google Scholar
|
45
|
Xiong X, Sun X, Wang Q, Qian X, Zhang Y,
Pan X and Dong XC: SIRT6 protects against palmitate-induced
pancreatic β-cell dysfunction and apoptosis. J Endocrinol.
231:159–165. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Litwak SA, Wali JA, Pappas EG, Saadi H,
Stanley WJ, Varanasi LC, Kay TW, Thomas HE and Gurzov EN: Lipotoxic
stress induces pancreatic β-cell apoptosis through modulation of
Bcl-2 proteins by the ubiquitin-proteasome system. J Diabetes Res.
2015:2806152015. View Article : Google Scholar
|
47
|
Lou SY, Liu Y, Chen WH, Ying J, He YM and
Wang WJ: Pollen Typhae total flavones inhibit expression of
interleukin-6 in C2C12 skeletal muscle cells cultured with
palmitate. Zhong Xi Yi Jie He Xue Bao. 6:488–492. 2008.In Chinese.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yu XA, Azietaku JT, Li J, Cao J, An M, He
J, Gao XM and Chang YX: Simultaneous determination of eight
flavonoids in plasma using LC-MS/MS and application to a
pharmacokinetic study after oral administration of Pollen Typhae
extract to rats. J Chromatogr B Analyt Technol Biomed Life Sci.
1044–1045:158–165. 2017. View Article : Google Scholar
|
49
|
Bhattacharya S, Oksbjerg N, Young JF and
Jeppesen PB: Caffeic acid, naringenin and quercetin enhance
glucose-stimulated insulin secretion and glucose sensitivity in
INS-1E cells. Diabetes Obes Metab. 16:602–612. 2014. View Article : Google Scholar
|
50
|
Zhang Y, Zhen W, Maechler P and Liu D:
Small molecule kaempferol modulates PDX-1 protein expression and
subsequently promotes pancreatic β-cell survival and function via
CREB. J Nutr Biochem. 24:638–646. 2013. View Article : Google Scholar
|
51
|
Bower AM, Real Hernandez LM, Berhow MA and
de Mejia EG: Bioactive compounds from culinary herbs inhibit a
molecular target for type 2 diabetes management, dipeptidyl
peptidase IV. J Agric Food Chem. 62:6147–6158. 2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bardy G, Virsolvy A, Quignard JF, Ravier
MA, Bertrand G, Dalle S, Cros G, Magous R, Richard S and Oiry C:
Quercetin induces insulin secretion by direct activation of L-type
calcium channels in pancreatic beta cells. Br J Pharmacol.
169:1102–1113. 2013. View Article : Google Scholar : PubMed/NCBI
|