Histone lysine methylation and congenital heart disease: From bench to bedside (Review)
- Authors:
- Xin Yi
- Xuejun Jiang
- Xiaoyan Li
- Ding-Sheng Jiang
-
Affiliations: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China, Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: August 30, 2017 https://doi.org/10.3892/ijmm.2017.3115
- Pages: 953-964
This article is mentioned in:
Abstract
![]() |
Campos CM, Zanardo EA, Dutra RL, Kulikowski LD and Kim CA: Investigation of copy number variation in children with conotruncal heart defects. Arq Bras Cardiol. 104:24–31. 2015. | |
Barros TL, Dias MdeJ and Nina RV: Congenital cardiac disease in childhood x socioeconomic conditions: A relationship to be considered in public health? Rev Bras Cir Cardiovasc. 29:448–454. 2014.PubMed/NCBI | |
Steffensen TS and Spicer DE: Congenital coronary artery anomalies for the pathologist. Fetal Pediatr Pathol. 33:268–288. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Castro M, Pichon O, Briand A, Poulain D, Gournay V, David A and Le Caignec C: Disruption of the SEMA3D gene in a patient with congenital heart defects. Hum Mutat. 36:30–33. 2015. View Article : Google Scholar | |
Vecoli C, Pulignani S, Foffa I and Andreassi MG: Congenital heart disease: The crossroads of genetics, epigenetics and environment. Curr Genomics. 15:390–399. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gittenberger-de Groot AC, Calkoen EE, Poelmann RE, Bartelings MM and Jongbloed MR: Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med. 46:640–652. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li P, Chen S, Xi L, Guo Y, Guo A and Sun K: Influence of genes and the environment in familial congenital heart defects. Mol Med Rep. 9:695–700. 2014. View Article : Google Scholar | |
Lalani SR and Belmont JW: Genetic basis of congenital cardiovascular malformations. Eur J Med Genet. 57:402–413. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kathiriya IS, Nora EP and Bruneau BG: Investigating the transcriptional control of cardiovascular development. Circ Res. 116:700–714. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meganathan K, Sotiriadou I, Natarajan K, Hescheler J and Sachinidis A: Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol. 183:117–128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y, Chatterjee B, Devine W, Damerla RR, et al: Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 521:520–524. 2015. View Article : Google Scholar : PubMed/NCBI | |
Andersen TA, Troelsen KL and Larsen LA: Of mice and men: Molecular genetics of congenital heart disease. Cell Mol Life Sci. 71:1327–1352. 2014. View Article : Google Scholar : | |
Yuan S, Zaidi S and Brueckner M: Congenital heart disease: Emerging themes linking genetics and development. Curr Opin Genet Dev. 23:352–359. 2013. View Article : Google Scholar : PubMed/NCBI | |
Serra-Juhé C, Cuscó I, Homs A, Flores R, Torán N and Pérez-Jurado LA: DNA methylation abnormalities in congenital heart disease. Epigenetics. 10:167–177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang QJ and Liu ZP: Histone methylations in heart development, congenital and adult heart diseases. Epigenomics. 7:321–330. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang CP and Bruneau BG: Epigenetics and cardiovascular development. Annu Rev Physiol. 74:41–68. 2012. View Article : Google Scholar | |
D'Urso A and Brickner JH: Mechanisms of epigenetic memory. Trends Genet. 30:230–236. 2014. View Article : Google Scholar : PubMed/NCBI | |
Becker PB and Workman JL: Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol. 5:a0179052013. View Article : Google Scholar : PubMed/NCBI | |
Krishnakumar R and Blelloch RH: Epigenetics of cellular reprogramming. Curr Opin Genet Dev. 23:548–555. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, Schramm K, Wolf P, Kunze S, Baran Y, et al: Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin. 8:432015. View Article : Google Scholar : PubMed/NCBI | |
Ziegler-Birling C, Daujat S, Schneider R and Torres-Padilla ME: Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development. Epigenetics. 11:553–562. 2016. View Article : Google Scholar : | |
Dudakovic A, Camilleri ET, Xu F, Riester SM, McGee-Lawrence ME, Bradley EW, Paradise CR, Lewallen EA, Thaler R, Deyle DR, et al: Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J Biol Chem. 290:27604–27617. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang F, Ramakrishnan S, Pokhrel S, Pflueger C, Parnell TJ, Kasten MM, Currie SL, Bhachech N, Horikoshi M, Graves BJ, et al: Interaction of the Jhd2 H3K4 demethylase with chromatin is controlled by histone H2A surfaces and restricted by H2B ubiquitination. J Biol Chem. 290:28760–28777. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Casas-Mollano JA, Xu J, Riethoven JJ, Zhang C and Cerutti H: Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl Acad Sci USA. 112:8487–8492. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Des Marais TL and Costa M: Chromatin memory in the development of human cancers. Gene Technol. 3:1142014. | |
Heo JB and Sung S: Encoding memory of winter by noncoding RNAs. Epigenetics. 6:544–547. 2011. View Article : Google Scholar : PubMed/NCBI | |
Torres IO and Fujimori DG: Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol. 35:68–75. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jaworska J, Ziemka-Nalecz M and Zalewska T: Histone deacetylases 1 and 2 are required for brain development. Int J Dev Biol. 59:171–177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carr SM, Poppy Roworth A, Chan C and La Thangue NB: Post-translational control of transcription factors: Methylation ranks highly. FEBS J. 282:4450–4465. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gupta N, Madapura MP, Bhat UA and Rao MR: Mapping of post-translational modifications of transition proteins, TP1 and TP2, and identification of protein arginine methyltransferase 4 and lysine methyltransferase 7 as methyltransferase for TP2. J Biol Chem. 290:12101–12122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Binda O: On your histone mark, SET, methylate! Epigenetics. 8:457–463. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lesne A, Foray N, Cathala G, Forné T, Wong H and Victor JM: Chromatin fiber allostery and the epigenetic code. J Phys Condens Matter. 27:0641142015. View Article : Google Scholar : PubMed/NCBI | |
Zuchegna C, Aceto F, Bertoni A, Romano A, Perillo B, Laccetti P, Gottesman ME, Avvedimento EV and Porcellini A: Mechanism of retinoic acid-induced transcription: Histone code, DNA oxidation and formation of chromatin loops. Nucleic Acids Res. 42:11040–11055. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gayatri S and Bedford MT: Readers of histone methylarginine marks. Biochim Biophys Acta. 1839:702–710. 2014. View Article : Google Scholar : PubMed/NCBI | |
Casciello F, Windloch K, Gannon F and Lee JS: Functional role of G9a histone methyltransferase in cancer. Front Immunol. 6:4872015. View Article : Google Scholar : PubMed/NCBI | |
Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, Jiang M, Hu D, Agirre X, Niesvizky I, et al: The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 21:1199–1208. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cho MH, Park JH, Choi HJ, Park MK, Won HY, Park YJ, Lee CH, Oh SH, Song YS, Kim HS, et al: DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 6:78212015. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, et al: Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev. 29:379–393. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G and Rupp RA: Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene. PLoS Genet. 9:e10031882013. View Article : Google Scholar : PubMed/NCBI | |
Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TC and Buesa C: KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics. 7:609–626. 2015. View Article : Google Scholar : PubMed/NCBI | |
Belakavadi M, Dell J, Grover GJ and Fondell JD: Thyroid hormone suppression of β-amyloid precursor protein gene expression in the brain involves multiple epigenetic regulatory events. Mol Cell Endocrinol. 339:72–80. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stein AB, Goonewardena SN, Jones TA, Prusick PJ, Bazzi AA, Belyavskaya JM, McCoskey MM and Dandar RA: The PTIP-associated histone methyltransferase complex prevents stress-induced maladaptive cardiac remodeling. PLoS One. 10:e01278392015. View Article : Google Scholar : PubMed/NCBI | |
Mathiyalagan P, Keating ST, Du XJ and El-Osta A: Chromatin modifications remodel cardiac gene expression. Cardiovasc Res. 103:7–16. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hohl M, Wagner M, Reil JC, Müller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Böhm M, Backs J, et al: HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest. 123:1359–1370. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bingham AJ, Ooi L, Kozera L, White E and Wood IC: The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes. Mol Cell Biol. 27:4082–4092. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cabrera JR, Olcese U and Horabin JI: A balancing act: Heterochromatin protein 1a and the polycomb group coordinate their levels to silence chromatin in Drosophila. Epigenetics Chromatin. 8:172015. View Article : Google Scholar : PubMed/NCBI | |
Sautel CF, Cannella D, Bastien O, Kieffer S, Aldebert D, Garin J, Tardieux I, Belrhali H and Hakimi MA: SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol. 27:5711–5724. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, et al: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature. 517:640–644. 2015. View Article : Google Scholar | |
Minkovsky A, Sahakyan A, Rankin-Gee E, Bonora G, Patel S and Plath K: The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation. Epigenetics Chromatin. 7:122014. View Article : Google Scholar : PubMed/NCBI | |
Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE and Lee JT: High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature. 504:465–469. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Telese F, Tan Y, Li W, Jin C, He X, Basnet H, Ma Q, Merkurjev D, Zhu X, et al: LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci. 18:1256–1264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY, et al: H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29:1362–1376. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kang SC, Kim SK, Chai JC, Kim SH, Won KJ, Lee YS, Jung KH and Chai YG: Transcriptomic Profiling and H3K27me3 Distribution reveal both demethylase-dependent and independent regulation of developmental gene transcription in cell differentiation. PLoS One. 10:e01352762015. View Article : Google Scholar : PubMed/NCBI | |
Copur Ö and Müller J: The histone H3-K27 demethylase Utx regulates HOX gene expression in Drosophila in a temporally restricted manner. Development. 140:3478–3485. 2013. View Article : Google Scholar : PubMed/NCBI | |
You L, Nie J, Sun WJ, Zheng ZQ and Yang XJ: Lysine acetylation: Enzymes, bromodomains and links to different diseases. Essays Biochem. 52:1–12. 2012. View Article : Google Scholar : PubMed/NCBI | |
Migliori V, Phalke S, Bezzi M and Guccione E: Arginine/lysinemethyl/methyl switches: Biochemical role of histone arginine methylation in transcriptional regulation. Epigenomics. 2:119–137. 2010. View Article : Google Scholar : PubMed/NCBI | |
Davie JK and Dent SY: Transcriptional control: An activating role for arginine methylation. Curr Biol. 12:R59–R61. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tessarz P and Kouzarides T: Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 15:703–708. 2014. View Article : Google Scholar : PubMed/NCBI | |
Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, Cook RG, Shabanowitz J, Hunt DF, Stallcup MR, et al: Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol. 11:996–1000. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, et al: Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science. 293:853–857. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR and Aswad DW: Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry. 40:5747–5756. 2001. View Article : Google Scholar : PubMed/NCBI | |
Aoshima K, Inoue E, Sawa H and Okada Y: Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Rep. 16:803–812. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shinsky SA, Monteith KE, Viggiano S and Cosgrove MS: Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. J Biol Chem. 290:6361–6375. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen CW, Koche RP, Sinha AU, Deshpande AJ, Zhu N, Eng R, Doench JG, Xu H, Chu SH, Qi J, et al: DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med. 21:335–343. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiao L and Liu X: Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science. 350:aac43832015. View Article : Google Scholar : PubMed/NCBI | |
Foda BM and Singh U: Dimethylated H3K27 is a repressive epigenetic histone mark in the protist Entamoeba histolytica and is significantly enriched in genes silenced via the RNAi pathway. J Biol Chem. 290:21114–21130. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vieira FQ, Costa-Pinheiro P, Almeida-Rios D, Graça I, Monteiro-Reis S, Simões-Sousa S, Carneiro I, Sousa EJ, Godinho MI, Baltazar F, et al: SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget. 6:13644–13657. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bierhoff H, Dammert MA, Brocks D, Dambacher S, Schotta G and Grummt I: Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell. 54:675–682. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton MC, Wen H and Shi X: Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation. Proc Natl Acad Sci USA. 110:17284–17289. 2013. View Article : Google Scholar | |
Hossain MA, Chung C, Pradhan SK and Johnson TL: The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription. Mol Cell Biol. 33:785–799. 2013. View Article : Google Scholar : | |
Ontoso D, Acosta I, van Leeuwen F, Freire R and San-Segundo PA: Dot1-dependent histone H3K79 methylation promotes activation of the Mek1 meiotic checkpoint effector kinase by regulating the Hop1 adaptor. PLoS Genet. 9:e10032622013. View Article : Google Scholar : PubMed/NCBI | |
Kim SK, Jung I, Lee H, Kang K, Kim M, Jeong K, Kwon CS, Han YM, Kim YS, Kim D, et al: Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem. 287:39698–39709. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao XX, Zhang YB, Ni PL, Wu ZL, Yan YC and Li YP: Protein arginine methyltransferase 6 (Prmt6) is essential for early zebrafish development through the direct suppression of Gadd45alphaa stress sensor gene. J Biol Chem. 291:402–412. 2016. View Article : Google Scholar | |
Feng Y, Hadjikyriacou A and Clarke SG: Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): The importance of acidic residues in the double E loop. J Biol Chem. 289:32604–32616. 2014. View Article : Google Scholar : PubMed/NCBI | |
Su X, Zhu G, Ding X, Lee SY, Dou Y, Zhu B, Wu W and Li H: Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev. 28:622–636. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HC, Wang M, Salsburg A and Knuckley B: Development of a plate-based screening assay to investigate the dubstrate dpecificity of the PRMT gamily of rnzymes. ACS Comb Sci. 17:500–505. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tini M, Naeem H and Torchia J: Biochemical analysis of arginine methylation in transcription. Methods Mol Biol. 523:235–247. 2009. View Article : Google Scholar : PubMed/NCBI | |
Del Rizzo PA and Trievel RC: Substrate and product specificities of SET domain methyltransferases. Epigenetics. 6:1059–1067. 2011. View Article : Google Scholar : PubMed/NCBI | |
Couture JF and Trievel RC: Histone-modifying enzymes: Encrypting an enigmatic epigenetic code. Curr Opin Struct Biol. 16:753–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Spellmon N, Holcomb J, Trescott L, Sirinupong N and Yang Z: Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci. 16:1406–1428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anand R and Marmorstein R: Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem. 282:35425–35429. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsukada Y and Zhang Y: Purification of histone demethylases from HeLa cells. Methods. 40:318–326. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Jin G and Zhou X: Modeling the relationship of epigenetic modifications to transcription factor binding. Nucleic Acids Res. 43:3873–3885. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Li Y, Gao H, Dong Y, Han P and Yu H: Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Cytotechnology. 68:849–859. 2016. View Article : Google Scholar : | |
Kim JD, Kim E, Koun S, Ham HJ, Rhee M, Kim MJ and Huh TL: Proper activity of histone H3 lysine 4 (H3K4) methyltransferase is required for morphogenesis during zebrafish cardiogenesis. Mol Cells. 38:580–586. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martinez SR, Gay MS and Zhang L: Epigenetic mechanisms in heart development and disease. Drug Discov Today. 20:799–811. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dorn GW II and Matkovich SJ: Epitranscriptional regulation of cardiovascular development and disease. J Physiol. 593:1799–1808. 2015. View Article : Google Scholar : | |
Zhao W, Liu L, Pan B, Xu Y, Zhu J, Nan C, Huang X and Tian J: Epigenetic regulation of cardiac myofibril gene expression during heart development. Cardiovasc Toxicol. 15:203–209. 2015. View Article : Google Scholar | |
Park CY, Pierce SA, von Drehle M, Ivey KN, Morgan JA, Blau HM and Srivastava D: skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc Natl Acad Sci USA. 107:20750–20755. 2010. View Article : Google Scholar : PubMed/NCBI | |
Drake KM, Comhair SA, Erzurum SC, Tuder RM and Aldred MA: Endothelial chromosome 13 deletion in congenital heart disease-associated pulmonary arterial hypertension dysregulates SMAD9 signaling. Am J Respir Crit Care Med. 191:850–854. 2015. View Article : Google Scholar : PubMed/NCBI | |
Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F, Brown DW, Mullen MP, Harris D, Stoler J, et al: Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics. 15:11272014. View Article : Google Scholar : PubMed/NCBI | |
Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, et al: De novo mutations in histone-modifying genes in congenital heart disease. Nature. 498:220–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ozanne SE and Constância M: Mechanisms of disease: The developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab. 3:539–546. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang QT: Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev Dyn. 241:1021–1033. 2012. View Article : Google Scholar : PubMed/NCBI | |
Geisler SJ and Paro R: Trithorax and Polycomb group-dependent regulation: A tale of opposing activities. Development. 142:2876–2887. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wan X, Liu L, Ding X, Zhou P, Yuan X, Zhou Z, Hu P, Zhou H, Li Q, Zhang S, et al: Mll2 controls cardiac lineage differentiation of mouse embryonic stem cells by promoting H3K4me3 deposition at cardiac-specific genes. Stem Cell Rev. 10:643–652. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Rotllant J, Li H, De Deyne P and Du SJ: SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA. 103:2713–2718. 2006. View Article : Google Scholar : PubMed/NCBI | |
Du SJ, Tan X and Zhang J: SMYD proteins: Key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken). 297:1650–1662. 2014. View Article : Google Scholar | |
Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD, et al: Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One. 10:e01217652015. View Article : Google Scholar : PubMed/NCBI | |
Diehl F, Brown MA, van Amerongen MJ, Novoyatleva T, Wietelmann A, Harriss J, Ferrazzi F, Böttger T, Harvey RP, Tucker PW, et al: Cardiac deletion of Smyd2 is dispensable for mouse heart development. PLoS One. 5:e97482010. View Article : Google Scholar : PubMed/NCBI | |
Fujii T, Tsunesumi S, Yamaguchi K, Watanabe S and Furukawa Y: Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One. 6:e234912011. View Article : Google Scholar : PubMed/NCBI | |
Papaioannou VE: The T-box gene family: Emerging roles in development, stem cells and cancer. Development. 141:3819–3833. 2014. View Article : Google Scholar : PubMed/NCBI | |
Greulich F, Rudat C and Kispert A: Mechanisms of T-box gene function in the developing heart. Cardiovasc Res. 91:212–222. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA and Baldini A: Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet. 8:e10025712012. View Article : Google Scholar : PubMed/NCBI | |
Caprio C and Baldini A: p53 Suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc Natl Acad Sci USA. 111:13385–13390. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Wang ZG, Liu XY, Zhao H, Zhou N, Zheng GF, Qiu XB, Li RG, Yuan F, Shi HY, et al: A novel TBX1 loss-of-function mutation associated with congenital heart disease. Pediatr Cardiol. 36:1400–1410. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sedletcaia A and Evans T: Heart chamber size in zebrafish is regulated redundantly by duplicated tbx2 genes. Dev Dyn. 240:1548–1557. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pang S, Liu Y, Zhao Z, Huang W, Chen D and Yan B: Novel and functional sequence variants within the TBX2 gene promoter in ventricular septal defects. Biochimie. 95:1807–1809. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Weerd JH, Badi I, van den Boogaard M, Stefanovic S, van de Werken HJ, Gomez-Velazquez M, Badia-Careaga C, Manzanares M, de Laat W, Barnett P, et al: A large permissive regulatory domain exclusively controls Tbx3 expression in the cardiac conduction system. Circ Res. 115:432–441. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hatcher CJ, Diman NY, Kim MS, Pennisi D, Song Y, Goldstein MM, Mikawa T and Basson CT: A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiol Genomics. 18:129–140. 2004. View Article : Google Scholar : PubMed/NCBI | |
Diman NY, Brooks G, Kruithof BP, Elemento O, Seidman JG, Seidman CE, Basson CT and Hatcher CJ: Tbx5 is required for avian and Mammalian epicardial formation and coronary vasculogenesis. Circ Res. 115:834–844. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Liu J, Olson P, Zhang K, Wynne J and Xie L: Tbx5 and Osr1 interact to regulate posterior second heart field cell cycle progression for cardiac septation. J Mol Cell Cardiol. 85:1–12. 2015. View Article : Google Scholar : PubMed/NCBI | |
Al-Qattan MM and Abou Al-Shaar H: Molecular basis of the clinical features of Holt-Oram syndrome resulting from missense and extended protein mutations of the TBX5 gene as well as TBX5 intragenic duplications. Gene. 560:129–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kimura M, Kikuchi A, Ichinoi N and Kure S: Novel TBX5 duplication in a Japanese family with Holt-Oram syndrome. Pediatr Cardiol. 36:244–247. 2015. View Article : Google Scholar | |
Wu SP, Dong XR, Regan JN, Su C and Majesky MW: Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol. 383:307–320. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Zhang W, Hu J, Zhang L, Sultana N, Wu B, Cai W, Zhou B and Cai CL: Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development. 140:3176–3187. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shen T, Aneas I, Sakabe N, Dirschinger RJ, Wang G, Smemo S, Westlund JM, Cheng H, Dalton N, Gu Y, et al: Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function. J Clin Invest. 121:4640–4654. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Chen H, Wang Y, Yong W, Zhu W, Liu Y, Wagner GR, Payne RM, Field LJ, Xin H, et al: Tbx20 transcription factor is a downstream mediator for bone morphogenetic protein-10 in regulating cardiac ventricular wall development and function. J Biol Chem. 286:36820–36829. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, et al: Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 81:280–291. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ishizaka A, Mizutani T, Kobayashi K, Tando T, Sakurai K, Fujiwara T and Iba H: Double plant homeodomain (PHD) finger proteins DPF3a and -3b are required as transcriptional co-activators in SWI/SNF complex-dependent activation of NF-κB RelA/p50 heterodimer. J Biol Chem. 287:11924–11933. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lange M, Kaynak B, Forster UB, Tönjes M, Fischer JJ, Grimm C, Schlesinger J, Just S, Dunkel I, Krueger T, et al: Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev. 22:2370–2384. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Huang Y, Fan J and Zhu GZ: PITX2 associates with PTIP-containing histone H3 lysine 4 methyltransferase complex. Biochem Biophys Res Commun. 444:634–637. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Patel SR, Xiao H and Dressler GR: The role of PTIP in maintaining embryonic stem cell pluripotency. Stem Cells. 27:1516–1523. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang M, Ren H, Liu J, Cadigan KM, Patel SR and Dressler GR: Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways. Development. 136:1929–1938. 2009. View Article : Google Scholar : PubMed/NCBI | |
Callen E, Faryabi RB, Luckey M, Hao B, Daniel JA, Yang W, Sun HW, Dressler G, Peng W, Chi H, et al: The DNA damage- and transcription-associated protein paxip1 controls thymocyte development and emigration. Immunity. 37:971–985. 2012. View Article : Google Scholar : PubMed/NCBI | |
Daniel JA, Santos MA, Wang Z, Zang C, Schwab KR, Jankovic M, Filsuf D, Chen HT, Gazumyan A, Yamane A, et al: PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science. 329:917–923. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, et al: Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest. 121:2641–2650. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, Zhang Y, Jin SW and Wang DZ: The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol. 194:551–565. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nicholson TB and Chen T: LSD1 demethylates histone and non-histone proteins. Epigenetics. 4:129–132. 2009. View Article : Google Scholar : PubMed/NCBI | |
He Y, Tang D, Cai C, Chai R and Li H: LSD1 is required for hair cell regeneration in zebrafish. Mol Neurobiol. 53:2421–2434. 2016. View Article : Google Scholar | |
van Riel B, Pakozdi T, Brouwer R, Monteiro R, Tuladhar K, Franke V, Bryne JC, Jorna R, Rijkers EJ, van Ijcken W, et al: A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells. Mol Cell Biol. 32:3814–3822. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nicholson TB, Singh AK, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Goetschkes M, Capodieci P, et al: A hypomorphic lsd1 allele results in heart development defects in mice. PLoS One. 8:e609132013. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S and Wang CY: BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol. 11:1002–1009. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hilton E, Johnston J, Whalen S, Okamoto N, Hatsukawa Y, Nishio J, Kohara H, Hirano Y, Mizuno S, Torii C, et al: BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet. 17:1325–1335. 2009. View Article : Google Scholar : PubMed/NCBI | |
Di Stefano C, Lombardo B, Fabbricatore C, Munno C, Caliendo I, Gallo F and Pastore L: Oculo-facio-cardio-dental (OFCD) syndrome: The first Italian case of BCOR and co-occurring OTC gene deletion. Gene. 559:203–206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang XJ, Ma X, Wang X, Zhou X, Li J, Sun SC and Liu H: Involvement of G9A-like protein (GLP) in the development of mouse preimplantation embryos in vitro. Reprod Fertil Dev. May 18–2015.Epub ahead of print. View Article : Google Scholar | |
Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T and Shinkai Y: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19:815–826. 2005. View Article : Google Scholar : PubMed/NCBI | |
Inagawa M, Nakajima K, Makino T, Ogawa S, Kojima M, Ito S, Ikenishi A, Hayashi T, Schwartz RJ, Nakamura K, et al: Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mech Dev. 130:519–531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, van Dooren M, Willemsen MH, Pfundt R, Turner A, et al: Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet. 46:598–606. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stewart DR and Kleefstra T: The chromosome 9q subtelomere deletion syndrome. Am J Med Genet C Semin Med Genet. 145C:383–392. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bikoff EK, Morgan MA and Robertson EJ: An expanding job description for Blimp-1/PRDM1. Curr Opin Genet Dev. 19:379–385. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morgan MA, Mould AW, Li L, Robertson EJ and Bikoff EK: Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Mol Cell Biol. 32:3403–3413. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Song AJ, Baker R, Micales B, Conway SJ and Lyons GE: Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res. 86:932–938. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim TG, Chen J, Sadoshima J and Lee Y: Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol Cell Biol. 24:10151–10160. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mysliwiec MR, Carlson CD, Tietjen J, Hung H, Ansari AZ and Lee Y: Jarid2 (Jumonji, AT rich interactive domain 2) regulates NOTCH1 expression via histone modification in the developing heart. J Biol Chem. 287:1235–1241. 2012. View Article : Google Scholar : | |
Mysliwiec MR, Bresnick EH and Lee Y: Endothelial Jarid2/Jumonji is required for normal cardiac development and proper Notch1 expression. J Biol Chem. 286:17193–17204. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dobreva G and Braun T: When silence is broken: Polycomb group proteins in heart development. Circ Res. 110:372–374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weston AD, Ozolins TR and Brown NA: Thoracic skeletal defects and cardiac malformations: A common epigenetic link? Birth Defects Res C Embryo Today. 78:354–370. 2006. View Article : Google Scholar | |
Sanulli S, Justin N, Teissandier A, Ancelin K, Portoso M, Caron M, Michaud A, Lombard B, da Rocha ST, Offer J, et al: Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol Cell. 57:769–783. 2015. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Olguín P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A and Bruneau BG: Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 44:343–347. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Ma Y, Kim EY, Yu W, Schwartz RJ, Qian L and Wang J: Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival. PLoS One. 7:e310052012. View Article : Google Scholar : PubMed/NCBI | |
Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA and Jaenisch R: X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci USA. 109:13004–13009. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morales Torres C, Laugesen A and Helin K: Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells. PLoS One. 8:e600202013. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Lee JW and Lee SK: UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell. 22:25–37. 2012. View Article : Google Scholar | |
Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE and Helin K: UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 449:731–734. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wang HY, Chepelev I, Zhu Q, Wei G, Zhao K and Wang RF: Stage-dependent and locus-specific role of histone demethylase Jumonji D3 (JMJD3) in the embryonic stages of lung development. PLoS Genet. 10:e10045242014. View Article : Google Scholar : PubMed/NCBI | |
Burgold T, Voituron N, Caganova M, Tripathi PP, Menuet C, Tusi BK, Spreafico F, Bévengut M, Gestreau C, Buontempo S, et al: The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep. 2:1244–1258. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ohtani K, Zhao C, Dobreva G, Manavski Y, Kluge B, Braun T, Rieger MA, Zeiher AM and Dimmeler S: Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res. 113:856–862. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen CP, Lin CJ, Chern SR, Liu YP, Kuo YL, Chen YN, Wu PS, Town DD, Chen LF, Yang CW, et al: Prenatal diagnosis and molecular cytogenetic characterization of a 1.07-Mb microdeletion at 5q35.2-q35.3 associated with NSD1 haploinsufficiency and Sotos syndrome. Taiwan J Obstet Gynecol. 53:583–587. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Lee JE, Sohn YB and Ko JM: First identified Korean family with Sotos syndrome caused by a novel intragenic mutation in NSD1. Ann Clin Lab Sci. 44:228–231. 2014.PubMed/NCBI | |
Sheth K, Moss J, Hyland S, Stinton C, Cole T and Oliver C: The behavioral characteristics of Sotos syndrome. Am J Med Genet A. 167A:2945–2956. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vallaster M, Vallaster CD and Wu SM: Epigenetic mechanisms in cardiac development and disease. Acta Biochim Biophys Sin (Shanghai). 44:92–102. 2012. View Article : Google Scholar | |
Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ and Kaneda Y: A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 460:287–291. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oh S and Janknecht R: Histone demethylase JMJD5 is essential for embryonic development. Biochem Biophys Res Commun. 420:61–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kawakami E, Tokunaga A, Ozawa M, Sakamoto R and Yoshida N: The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev. 135:31–42. 2015. View Article : Google Scholar | |
Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L and Shilatifard A: Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 24:574–589. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, et al: The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 4:e10001902008. View Article : Google Scholar : PubMed/NCBI | |
Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, Wang DZ, Xiao X and Zhang Y: DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25:263–274. 2011. View Article : Google Scholar : PubMed/NCBI | |
Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME and Reinberg D: The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev. 26:2580–2589. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lennartsson A and Ekwall K: Histone modification patterns and epigenetic codes. Biochim Biophys Acta. 1790:863–868. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tatton-Brown K and Rahman N: Clinical features of NSD1-positive Sotos syndrome. Clin Dysmorphol. 13:199–204. 2004. View Article : Google Scholar : PubMed/NCBI |