1
|
Eckert DJ and Malhotra A: Pathophysiology
of adult obstructive sleep apnea. Proc Am Thorac Soc. 5:144–153.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Douglas NJ and Polo O: Pathogenesis of
obstructive sleep apnoea/hypopnoea syndrome. Lancet. 344:653–655.
1994. View Article : Google Scholar : PubMed/NCBI
|
3
|
Owens RL, Eckert DJ, Yeh SY and Malhotra
A: Upper airway function in the pathogenesis of obstructive sleep
apnea: A review of the current literature. Curr Opin Pulm Med.
14:519–524. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sériès FJ, Simoneau SA, Pierre S St and
Marc I: Characteristics of the genioglossus and musculus uvulae in
sleep apnea hypopnea syndrome and in snorers. Am J Respir Crit Care
Med. 153:1870–1874. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bradford A, McGuire M and O'Halloran KD:
Does episodic hypoxia affect upper airway dilator muscle function?
Implications for the pathophysiology of obstructive sleep apnoea.
Respir Physiol Neurobiol. 147:223–234. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Malhotra A, Pillar G, Fogel RB, Beauregard
J, Edwards JK, Slamowitz DI, Shea SA and White DP: Genioglossal but
not palatal muscle activity relates closely to pharyngeal pressure.
Am J Respir Crit Care Med. 162:1058–1062. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cai Z, Manalo DJ, Wei G, Rodriguez ER,
Fox-Talbot K, Lu H, Zweier JL and Semenza GL: Hearts from rodents
exposed to intermittent hypoxia or erythropoietin are protected
against ischemia-reperfusion injury. Cir culation. 108:79–85.
2003.
|
8
|
Yuan G, Nanduri J, Bhasker CR, Semenza GL
and Prabhakar NR: Ca2+/calmodulin kinase-dependent
activation of hypoxia inducible factor 1 transcriptional activity
in cells subjected to intermittent hypoxia. J Biol Chem.
280:4321–4328. 2005. View Article : Google Scholar
|
9
|
Pae EK, Wu J, Nguyen D, Monti R and Harper
RM: Geniohyoid muscle properties and myosin heavy chain composition
are altered after short-term intermittent hypoxic exposure. J Appl
Physiol (1985). 98:889–894. 2005. View Article : Google Scholar
|
10
|
Chen L, Zhang J, Gan TX, Chen-Izu Y,
Hasday JD, Karmazyn M, Balke CW and Scharf SM: Left ventricular
dysfunction and associated cellular injury in rats exposed to
chronic intermittent hypoxia. J Appl Physiol (1985). 104:218–223.
2008. View Article : Google Scholar
|
11
|
Stroka DM, Burkhardt T, Desbaillets I,
Wenger RH, Neil DA, Bauer C, Gassmann M and Candinas D: HIF-1 is
expressed in normoxic tissue and displays an organ-specific
regulation under systemic hypoxia. FASEB J. 15:2445–2453.
2001.PubMed/NCBI
|
12
|
Zhou J and Liu Y: Effects of genistein and
estrogen on the genioglossus in rats exposed to chronic
intermittent hypoxia may be HIF-1α dependent. Oral Dis. 19:702–711.
2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jia SS and Liu YH: Down-regulation of
hypoxia inducible factor-1 alpha: A possible explanation for the
protective effects of estrogen on genioglossus fatigue resistance.
Eur J Oral Sci. 118:139–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lu Y, Liu Y and Li Y: Comparison of
natural estrogens and synthetic derivative on genioglossus function
and estrogen receptors expression in rats with chronic intermittent
hypoxia. J Steroid Biochem Mol Biol. 140:71–79. 2014. View Article : Google Scholar
|
15
|
Solakidi S, Psarra AM and Sekeris CE:
Differential distribution of glucocorticoid and estrogen receptor
isoforms: Localization of GRbeta and ERalpha in nucleoli and
GRalpha and ERbeta in the mitochondria of human osteosarcoma SaOS-2
and hepatocarcinoma HepG2 cell lines. J Musculoskelet Neuronal
Interact. 7:240–245. 2007.PubMed/NCBI
|
16
|
Aschim EL, Saether T, Wiger R, Grotmol T
and Haugen TB: Differential distribution of splice variants of
estrogen receptor beta in human testicular cells suggests specific
functions in spermatogenesis. J Steroid Biochem Mol Biol.
92:97–106. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Couse JF, Lindzey J, Grandien K,
Gustafsson JA and Korach KS: Tissue distribution and quantitative
analysis of estrogen receptor-alpha (ERalpha) and estrogen
receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type
and ERalpha-knockout mouse. Endocrinology. 138:4613–4621. 1997.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kalbe C, Mau M, Wollenhaupt K and Rehfeldt
C: Evidence for estrogen receptor alpha and beta expression in
skeletal muscle of pigs. Histochem Cell Biol. 127:95–107. 2007.
View Article : Google Scholar
|
19
|
Veasey SC, Guilleminault C, Strohl KP,
Sanders MH, Ballard RD and Magalang UJ: Medical therapy for
obstructive sleep apnea: A review by the Medical Therapy for
Obstructive Sleep Apnea Task Force of the Standards of Practice
Committee of the American Academy of Sleep Medicine. Sleep.
29:1036–1044. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bixler EO, Vgontzas AN, Lin HM, Ten Have
T, Rein J, Vela-Bueno A and Kales A: Prevalence of sleep-disordered
breathing in women: Effects of gender. Am J Respir Crit Care Med.
163:608–613. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pickett CK, Regensteiner JG, Woodard WD,
Hagerman DD, Weil JV and Moore LG: Progestin and estrogen reduce
sleep-disordered breathing in postmenopausal women. J Appl Physiol
(1985). 66:1656–1661. 1989.
|
22
|
Popovic RM and White DP: Upper airway
muscle activity in normal women: Influence of hormonal status. J
Appl Physiol (1985). 84:1055–1062. 1998.
|
23
|
Patisaul HB and Jefferson W: The pros and
cons of phytoestrogens. Front Neuroendocrinol. 31:400–419. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhong C, Zhu J, Chang J and Sun X: Concise
total syntheses of (±)isopaucifloral F, (±)quadrangularin A, and
(±)pallidol. Tetrahedron Lett. 52:2815–2817. 2011. View Article : Google Scholar
|
25
|
Bi R, Broutman G, Foy MR, Thompson RF and
Baudry M: The tyrosine kinase and mitogen-activated protein kinase
pathways mediate multiple effects of estrogen in hippocampus. Proc
Natl Acad Sci USA. 97:3602–3607. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Song RX, McPherson RA, Adam L, Bao Y,
Shupnik M, Kumar R and Santen RJ: Linkage of rapid estrogen action
to MAPK activation by ERalpha-Shc association and Shc pathway
activation. Mol Endocrinol. 16:116–127. 2002.PubMed/NCBI
|
27
|
Chen CC, Lee WR and Safe S: Egr-1 is
activated by 17beta-estradiol in MCF-7 cells by mitogen-activated
protein kinase-dependent phosphorylation of ELK-1. J Cell Biochem.
93:1063–1074. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kazi AA and Koos RD: Estrogen-induced
activation of hypoxia-inducible factor-1alpha, vascular endothelial
growth factor expression, and edema in the uterus are mediated by
the phosphatidylinositol 3-kinase/Akt pathway. Endocrinology.
148:2363–2374. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yun SP, Lee MY, Ryu JM, Song CH and Han
HJ: Role of HIF-1alpha and VEGF in human mesenchymal stem cell
proliferation by 17beta-estradiol: Involvement of PKC, PI3K/Akt,
and MAPKs. Am J Physiol Cell Physiol. 296:C317–C326. 2009.
View Article : Google Scholar
|
30
|
Hou YX, Jia SS and Liu YH:
17beta-Estradiol accentuates contractility of rat genioglossal
muscle via regulation of estrogen receptor alpha. Arch Oral Biol.
55:309–317. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xu J, Xiang Q, Lin G, Fu X, Zhou K, Jiang
P, Zheng S and Wang T: Estrogen improved metabolic syndrome through
down-regulation of VEGF and HIF-1α to inhibit hypoxia of periaortic
and intra-abdominal fat in ovariectomized female rats. Mol Biol
Rep. 39:8177–8185. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Miyauchi Y, Sato Y, Kobayashi T, Yoshida
S, Mori T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Miyamoto K, et
al: HIF1α is required for osteoclast activation by estrogen
deficiency in postmenopausal osteoporosis. Proc Natl Acad Sci USA.
110:16568–16573. 2013. View Article : Google Scholar
|
33
|
Rzemieniec J, Litwa E, Wnuk A, Lason W,
Gołas A, Krzeptowski W and Kajta M: Neuroprotective action of
raloxifene against hypoxia-induced damage in mouse hippocampal
cells depends on ERα but not ERβ or GPR30 signalling. J Steroid
Biochem Mol Biol. 146:26–37. 2015. View Article : Google Scholar
|
34
|
Camps C, Saini HK, Mole DR, Choudhry H,
Reczko M, Guerra-Assunção JA, Tian YM, Buffa FM, Harris AL,
Hatzigeorgiou AG, et al: Integrated analysis of microRNA and mRNA
expression and association with HIF binding reveals the complexity
of microRNA expression regulation under hypoxia. Mol Cancer.
13:282014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chung HY, Lee SJ, Lee JM, Huh S, Kim HK,
Kwon OH, Lim HJ, Oh EJ, Kim TJ, O TM, et al: Expression patterns of
HIF-1alpha under hypoxia in vascular smooth muscle cells of venous
malformations. Ann Plast Surg. 75:332–7. 2015. View Article : Google Scholar
|
36
|
Yi P, Driscoll MD, Huang J, Bhagat S, Hilf
R, Bambara RA and Muyan M: The effects of estrogen-responsive
element- and ligand-induced structural changes on the recruitment
of cofactors and transcriptional responses by ER alpha and ER beta.
Mol Endocrinol. 16:674–693. 2002.PubMed/NCBI
|
37
|
Filardo EJ, Quinn JA, Bland KI and
Frackelton AR Jr: Estrogen-induced activation of Erk-1 and Erk-2
requires the G protein-coupled receptor homolog, GPR30, and occurs
via trans-activation of the epidermal growth factor receptor
through release of HB-EGF. Mol Endocrinol. 14:1649–1660. 2000.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Thomas P, Pang Y, Filardo EJ and Dong J:
Identity of an estrogen membrane receptor coupled to a G protein in
human breast cancer cells. Endocrinology. 146:624–632. 2005.
View Article : Google Scholar
|
39
|
Revankar CM, Cimino DF, Sklar LA,
Arterburn JB and Prossnitz ER: A transmembrane intracellular
estrogen receptor mediates rapid cell signaling. Science.
307:1625–1630. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
De Francesco EM, Pellegrino M, Santolla
MF, Lappano R, Ricchio E, Abonante S and Maggiolini M: GPER
mediates activation of HIF1α/VEGF signaling by estrogens. Cancer
Res. 74:4053–4064. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guzeloglu Kayisli O, Kayisli UA, Luleci G
and Arici A: In vivo and in vitro regulation of Akt activation in
human endometrial cells is estrogen dependent. Biol Reprod.
71:714–721. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Linford NJ, Yang Y, Cook DG and Dorsa DM:
Neuronal apoptosis resulting from high doses of the isoflavone
genistein: Role for calcium and p42/44 mitogen-activated protein
kinase. J Pharmacol Exp Ther. 299:67–75. 2001.PubMed/NCBI
|
43
|
Salceda S, Beck I, Srinivas V and Caro J:
Complex role of protein phosphorylation in gene activation by
hypoxia. Kidney Int. 51:556–559. 1997. View Article : Google Scholar : PubMed/NCBI
|
44
|
Mazure NM, Chen EY, Laderoute KR and
Giaccia AJ: Induction of vascular endothelial growth factor by
hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt
signaling pathway in Ha-ras-transformed cells through a hypoxia
inducible factor-1 transcriptional element. Blood. 90:3322–3331.
1997.PubMed/NCBI
|